Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced st...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2023-01, Vol.32 (1), p.10305-210 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 10305 |
container_title | Chinese physics B |
container_volume | 32 |
creator | Wu, Dan Li, Xiao Wang, Liang-Liang Zhang, Jia-Shun Chen, Wei Wang, Yue Wang, Hong-Jie Li, Jian-Guang Yin, Xiao-Jie Wu, Yuan-Da An, Jun-Ming Song, Ze-Guo |
description | Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations. |
doi_str_mv | 10.1088/1674-1056/ac9224 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_ac9224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202301022</wanfj_id><sourcerecordid>zgwl_e202301022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</originalsourceid><addsrcrecordid>eNp1kLtPwzAQxj2ARHnsjN5YCLUdx2lGVPGSiljKwmLZzrlxaR7Yiar2r8dREExMp7v7vu90P4SuKbmjZLGYU5HzhJJMzJUpGOMnaPY7OkPnIWwJEZSwdIa6NdQdeNUPHrCplFemB--OqndtE3BrcXA7ZxRW4VDX0Htn8KsyVfIBVVOCx66Jegu-jcvYmsp12LYefw2q6Ycaf8IBly5Eox7GzEt0atUuwNVPvUDvjw_r5XOyent6Wd6vEpNS1ieM6CznUEBB9QI4y4XlRAshOIiClqVOIc-zgmeZLVJFDRGppVlpU8610kanF-hmyt2rxqpmI7ft4Jt4UR43-50EFt8nkQGLSjIpjW9D8GBl512t_EFSIkeecoQnR3hy4hktt5PFtd1f8L_yb5_fetM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</title><source>IOP Publishing Journals</source><creator>Wu, Dan ; Li, Xiao ; Wang, Liang-Liang ; Zhang, Jia-Shun ; Chen, Wei ; Wang, Yue ; Wang, Hong-Jie ; Li, Jian-Guang ; Yin, Xiao-Jie ; Wu, Yuan-Da ; An, Jun-Ming ; Song, Ze-Guo</creator><creatorcontrib>Wu, Dan ; Li, Xiao ; Wang, Liang-Liang ; Zhang, Jia-Shun ; Chen, Wei ; Wang, Yue ; Wang, Hong-Jie ; Li, Jian-Guang ; Yin, Xiao-Jie ; Wu, Yuan-Da ; An, Jun-Ming ; Song, Ze-Guo</creatorcontrib><description>Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/ac9224</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>interference visibility ; planar lightwave circuit ; quantum key distribution ; temperature characterization</subject><ispartof>Chinese physics B, 2023-01, Vol.32 (1), p.10305-210</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</citedby><cites>FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/ac9224/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,4012,27906,27907,27908,53829</link.rule.ids></links><search><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Wang, Liang-Liang</creatorcontrib><creatorcontrib>Zhang, Jia-Shun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Wang, Hong-Jie</creatorcontrib><creatorcontrib>Li, Jian-Guang</creatorcontrib><creatorcontrib>Yin, Xiao-Jie</creatorcontrib><creatorcontrib>Wu, Yuan-Da</creatorcontrib><creatorcontrib>An, Jun-Ming</creatorcontrib><creatorcontrib>Song, Ze-Guo</creatorcontrib><title>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.</description><subject>interference visibility</subject><subject>planar lightwave circuit</subject><subject>quantum key distribution</subject><subject>temperature characterization</subject><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtPwzAQxj2ARHnsjN5YCLUdx2lGVPGSiljKwmLZzrlxaR7Yiar2r8dREExMp7v7vu90P4SuKbmjZLGYU5HzhJJMzJUpGOMnaPY7OkPnIWwJEZSwdIa6NdQdeNUPHrCplFemB--OqndtE3BrcXA7ZxRW4VDX0Htn8KsyVfIBVVOCx66Jegu-jcvYmsp12LYefw2q6Ycaf8IBly5Eox7GzEt0atUuwNVPvUDvjw_r5XOyent6Wd6vEpNS1ieM6CznUEBB9QI4y4XlRAshOIiClqVOIc-zgmeZLVJFDRGppVlpU8610kanF-hmyt2rxqpmI7ft4Jt4UR43-50EFt8nkQGLSjIpjW9D8GBl512t_EFSIkeecoQnR3hy4hktt5PFtd1f8L_yb5_fetM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Dan</creator><creator>Li, Xiao</creator><creator>Wang, Liang-Liang</creator><creator>Zhang, Jia-Shun</creator><creator>Chen, Wei</creator><creator>Wang, Yue</creator><creator>Wang, Hong-Jie</creator><creator>Li, Jian-Guang</creator><creator>Yin, Xiao-Jie</creator><creator>Wu, Yuan-Da</creator><creator>An, Jun-Ming</creator><creator>Song, Ze-Guo</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China%State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Laboratory of Quantum Information,CAS,University of Science and Technology of China,Hefei 230026,China%State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China</general><general>State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China</general><general>Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China</general><general>College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China%Wuxi Institute of Interconnect Technology,Co.,Ltd.Wuxi 214000,China</general><general>State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230101</creationdate><title>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</title><author>Wu, Dan ; Li, Xiao ; Wang, Liang-Liang ; Zhang, Jia-Shun ; Chen, Wei ; Wang, Yue ; Wang, Hong-Jie ; Li, Jian-Guang ; Yin, Xiao-Jie ; Wu, Yuan-Da ; An, Jun-Ming ; Song, Ze-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>interference visibility</topic><topic>planar lightwave circuit</topic><topic>quantum key distribution</topic><topic>temperature characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Wang, Liang-Liang</creatorcontrib><creatorcontrib>Zhang, Jia-Shun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Wang, Hong-Jie</creatorcontrib><creatorcontrib>Li, Jian-Guang</creatorcontrib><creatorcontrib>Yin, Xiao-Jie</creatorcontrib><creatorcontrib>Wu, Yuan-Da</creatorcontrib><creatorcontrib>An, Jun-Ming</creatorcontrib><creatorcontrib>Song, Ze-Guo</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dan</au><au>Li, Xiao</au><au>Wang, Liang-Liang</au><au>Zhang, Jia-Shun</au><au>Chen, Wei</au><au>Wang, Yue</au><au>Wang, Hong-Jie</au><au>Li, Jian-Guang</au><au>Yin, Xiao-Jie</au><au>Wu, Yuan-Da</au><au>An, Jun-Ming</au><au>Song, Ze-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>10305</spage><epage>210</epage><pages>10305-210</pages><issn>1674-1056</issn><abstract>Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ac9224</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2023-01, Vol.32 (1), p.10305-210 |
issn | 1674-1056 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1674_1056_ac9224 |
source | IOP Publishing Journals |
subjects | interference visibility planar lightwave circuit quantum key distribution temperature characterization |
title | Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20characterizations%20of%20silica%20asymmetric%20Mach-Zehnder%20interferometer%20chip%20for%20quantum%20key%20distribution&rft.jtitle=Chinese%20physics%20B&rft.au=Wu,%20Dan&rft.date=2023-01-01&rft.volume=32&rft.issue=1&rft.spage=10305&rft.epage=210&rft.pages=10305-210&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/ac9224&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202301022%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202301022&rfr_iscdi=true |