Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution

Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2023-01, Vol.32 (1), p.10305-210
Hauptverfasser: Wu, Dan, Li, Xiao, Wang, Liang-Liang, Zhang, Jia-Shun, Chen, Wei, Wang, Yue, Wang, Hong-Jie, Li, Jian-Guang, Yin, Xiao-Jie, Wu, Yuan-Da, An, Jun-Ming, Song, Ze-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 1
container_start_page 10305
container_title Chinese physics B
container_volume 32
creator Wu, Dan
Li, Xiao
Wang, Liang-Liang
Zhang, Jia-Shun
Chen, Wei
Wang, Yue
Wang, Hong-Jie
Li, Jian-Guang
Yin, Xiao-Jie
Wu, Yuan-Da
An, Jun-Ming
Song, Ze-Guo
description Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.
doi_str_mv 10.1088/1674-1056/ac9224
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_ac9224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202301022</wanfj_id><sourcerecordid>zgwl_e202301022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</originalsourceid><addsrcrecordid>eNp1kLtPwzAQxj2ARHnsjN5YCLUdx2lGVPGSiljKwmLZzrlxaR7Yiar2r8dREExMp7v7vu90P4SuKbmjZLGYU5HzhJJMzJUpGOMnaPY7OkPnIWwJEZSwdIa6NdQdeNUPHrCplFemB--OqndtE3BrcXA7ZxRW4VDX0Htn8KsyVfIBVVOCx66Jegu-jcvYmsp12LYefw2q6Ycaf8IBly5Eox7GzEt0atUuwNVPvUDvjw_r5XOyent6Wd6vEpNS1ieM6CznUEBB9QI4y4XlRAshOIiClqVOIc-zgmeZLVJFDRGppVlpU8610kanF-hmyt2rxqpmI7ft4Jt4UR43-50EFt8nkQGLSjIpjW9D8GBl512t_EFSIkeecoQnR3hy4hktt5PFtd1f8L_yb5_fetM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</title><source>IOP Publishing Journals</source><creator>Wu, Dan ; Li, Xiao ; Wang, Liang-Liang ; Zhang, Jia-Shun ; Chen, Wei ; Wang, Yue ; Wang, Hong-Jie ; Li, Jian-Guang ; Yin, Xiao-Jie ; Wu, Yuan-Da ; An, Jun-Ming ; Song, Ze-Guo</creator><creatorcontrib>Wu, Dan ; Li, Xiao ; Wang, Liang-Liang ; Zhang, Jia-Shun ; Chen, Wei ; Wang, Yue ; Wang, Hong-Jie ; Li, Jian-Guang ; Yin, Xiao-Jie ; Wu, Yuan-Da ; An, Jun-Ming ; Song, Ze-Guo</creatorcontrib><description>Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/ac9224</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>interference visibility ; planar lightwave circuit ; quantum key distribution ; temperature characterization</subject><ispartof>Chinese physics B, 2023-01, Vol.32 (1), p.10305-210</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</citedby><cites>FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/ac9224/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,4012,27906,27907,27908,53829</link.rule.ids></links><search><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Wang, Liang-Liang</creatorcontrib><creatorcontrib>Zhang, Jia-Shun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Wang, Hong-Jie</creatorcontrib><creatorcontrib>Li, Jian-Guang</creatorcontrib><creatorcontrib>Yin, Xiao-Jie</creatorcontrib><creatorcontrib>Wu, Yuan-Da</creatorcontrib><creatorcontrib>An, Jun-Ming</creatorcontrib><creatorcontrib>Song, Ze-Guo</creatorcontrib><title>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.</description><subject>interference visibility</subject><subject>planar lightwave circuit</subject><subject>quantum key distribution</subject><subject>temperature characterization</subject><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtPwzAQxj2ARHnsjN5YCLUdx2lGVPGSiljKwmLZzrlxaR7Yiar2r8dREExMp7v7vu90P4SuKbmjZLGYU5HzhJJMzJUpGOMnaPY7OkPnIWwJEZSwdIa6NdQdeNUPHrCplFemB--OqndtE3BrcXA7ZxRW4VDX0Htn8KsyVfIBVVOCx66Jegu-jcvYmsp12LYefw2q6Ycaf8IBly5Eox7GzEt0atUuwNVPvUDvjw_r5XOyent6Wd6vEpNS1ieM6CznUEBB9QI4y4XlRAshOIiClqVOIc-zgmeZLVJFDRGppVlpU8610kanF-hmyt2rxqpmI7ft4Jt4UR43-50EFt8nkQGLSjIpjW9D8GBl512t_EFSIkeecoQnR3hy4hktt5PFtd1f8L_yb5_fetM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wu, Dan</creator><creator>Li, Xiao</creator><creator>Wang, Liang-Liang</creator><creator>Zhang, Jia-Shun</creator><creator>Chen, Wei</creator><creator>Wang, Yue</creator><creator>Wang, Hong-Jie</creator><creator>Li, Jian-Guang</creator><creator>Yin, Xiao-Jie</creator><creator>Wu, Yuan-Da</creator><creator>An, Jun-Ming</creator><creator>Song, Ze-Guo</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China%State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%Laboratory of Quantum Information,CAS,University of Science and Technology of China,Hefei 230026,China%State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China</general><general>State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China%State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China</general><general>Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China</general><general>College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China%Wuxi Institute of Interconnect Technology,Co.,Ltd.Wuxi 214000,China</general><general>State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230101</creationdate><title>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</title><author>Wu, Dan ; Li, Xiao ; Wang, Liang-Liang ; Zhang, Jia-Shun ; Chen, Wei ; Wang, Yue ; Wang, Hong-Jie ; Li, Jian-Guang ; Yin, Xiao-Jie ; Wu, Yuan-Da ; An, Jun-Ming ; Song, Ze-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-20b574e9e91b8e4276f40b6664e691ddb3e7759455f93a1c063f15df344babcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>interference visibility</topic><topic>planar lightwave circuit</topic><topic>quantum key distribution</topic><topic>temperature characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Wang, Liang-Liang</creatorcontrib><creatorcontrib>Zhang, Jia-Shun</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Wang, Hong-Jie</creatorcontrib><creatorcontrib>Li, Jian-Guang</creatorcontrib><creatorcontrib>Yin, Xiao-Jie</creatorcontrib><creatorcontrib>Wu, Yuan-Da</creatorcontrib><creatorcontrib>An, Jun-Ming</creatorcontrib><creatorcontrib>Song, Ze-Guo</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Dan</au><au>Li, Xiao</au><au>Wang, Liang-Liang</au><au>Zhang, Jia-Shun</au><au>Chen, Wei</au><au>Wang, Yue</au><au>Wang, Hong-Jie</au><au>Li, Jian-Guang</au><au>Yin, Xiao-Jie</au><au>Wu, Yuan-Da</au><au>An, Jun-Ming</au><au>Song, Ze-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>10305</spage><epage>210</epage><pages>10305-210</pages><issn>1674-1056</issn><abstract>Quantum key distribution (QKD) system based on passive silica planar lightwave circuit (PLC) asymmetric Mach–Zehnder interferometers (AMZI) is characterized with thermal stability, low loss and sufficient integration scalability. However, waveguide stresses, both intrinsic and temperature-induced stresses, have significant impacts on the stable operation of the system. We have designed silica AMZI chips of 400 ps delay, with bend waveguides length equalized for both long and short arms to balance the stresses thereof. The temperature characteristics of the silica PLC AMZI chip are studied. The interference visibility at the single photon level is kept higher than 95% over a wide temperature range of 12 °C. The delay time change is 0.321 ps within a temperature change of 40 °C. The spectral shift is 0.0011~nm/0.1 °C. Temperature-induced delay time and peak wavelength variations do not affect the interference visibility. The experiment results demonstrate the advantage of being tolerant to chip temperature fluctuations.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ac9224</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2023-01, Vol.32 (1), p.10305-210
issn 1674-1056
language eng
recordid cdi_crossref_primary_10_1088_1674_1056_ac9224
source IOP Publishing Journals
subjects interference visibility
planar lightwave circuit
quantum key distribution
temperature characterization
title Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20characterizations%20of%20silica%20asymmetric%20Mach-Zehnder%20interferometer%20chip%20for%20quantum%20key%20distribution&rft.jtitle=Chinese%20physics%20B&rft.au=Wu,%20Dan&rft.date=2023-01-01&rft.volume=32&rft.issue=1&rft.spage=10305&rft.epage=210&rft.pages=10305-210&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/ac9224&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202301022%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202301022&rfr_iscdi=true