Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
As a model molecule of actinide chemistry, UO molecule plays an important role in understanding the electronic structure and chemical bonding of actinide-containing species. We report a study of the laser-induced fluorescence spectra of the U 16 O and U 18 O using two-dimensional spectroscopy. Sever...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2022-05, Vol.31 (5), p.53301-286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a model molecule of actinide chemistry, UO molecule plays an important role in understanding the electronic structure and chemical bonding of actinide-containing species. We report a study of the laser-induced fluorescence spectra of the U
16
O and U
18
O using two-dimensional spectroscopy. Several rotationally resolved excitation spectra were investigated. Accurate molecular rotational constants and equilibrium internuclear distances were reported. Low-lying electronic states information was extracted from high resolution dispersed fluorescence spectra and analyzed by the ligand field theory model. The configuration of the ground state was determined as U
2+
(5f
3
7s)O
2−
. The branching ratios, and the vibrational harmonic and anharmonic parameters were also obtained. Radiative lifetimes were determined by recording the time-resolved fluorescence spectroscopy. Transition dipole moments were calculated using the branching ratios and the radiative lifetimes. These findings were elucidated by using quantum-chemical calculations, and the chemical bonding was also analyzed. The findings presented in this work will enrich our understanding of actinide-containing molecules. |
---|---|
ISSN: | 1674-1056 |
DOI: | 10.1088/1674-1056/ac43a4 |