FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2022-01, Vol.31 (2), p.20505-130 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 2 |
container_start_page | 20505 |
container_title | Chinese physics B |
container_volume | 31 |
creator | Yu, Fei Zhang, Zinan Shen, Hui Huang, Yuanyuan Cai, Shuo Du, Sichun |
description | A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number generator (PRNG) based on MHNN is proposed. The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator, which effectively ensures the randomness of PRNG. The experiments in this paper comply with the IEEE 754-1985 high precision 32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7Z020CLG400-2 FPGA chip and the Verilog-HDL hardware programming language. The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis, proving its randomness and high performance. Finally, an image encryption system based on PRNG is proposed and implemented on FPGA, which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things (IoT). |
doi_str_mv | 10.1088/1674-1056/ac3cb2 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_ac3cb2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202202012</wanfj_id><sourcerecordid>zgwl_e202202012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-cac00f6cb19e6aba74b59c4218729b7b3e7c226c2f9101ae26a631795aa261723</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhnNQsH7cPebmxdok22a7x1JsKxQtoucwm51dU_cjJFuX-jf8w2ZZ0ZMQGHh55s3wEHLN2R1n8_mEy3g65mwmJ6AjnYoTMvqNzsi593vGJGciGpGv1W69oKayJVZYt9CapqZQZyGCAinW2h3tEFpbGj0ATU6B1tjR3fPjmqbgMaM9QiusnPGt-UC6aWxusMwCd3BQhtF2jXunnWnfAuktahNi0IEeWgsHmQlHXJLTHEqPVz_zgryu7l-Wm_H2af2wXGzHOuKiHWvQjOVSpzxBCSnE03SW6Kng81gkaZxGGGshpBZ5whkHFBJkxONkBiAkj0V0QW6G3g7qHOpC7ZuDq8OP6rPoSoWCifAY70k2kNo13jvMlXVBkDsqzlSvXPV-Ve9XDcrDyu2wYhr7V_wv_g07KYa2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient</title><source>IOP Publishing Journals</source><creator>Yu, Fei ; Zhang, Zinan ; Shen, Hui ; Huang, Yuanyuan ; Cai, Shuo ; Du, Sichun</creator><creatorcontrib>Yu, Fei ; Zhang, Zinan ; Shen, Hui ; Huang, Yuanyuan ; Cai, Shuo ; Du, Sichun</creatorcontrib><description>A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number generator (PRNG) based on MHNN is proposed. The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator, which effectively ensures the randomness of PRNG. The experiments in this paper comply with the IEEE 754-1985 high precision 32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7Z020CLG400-2 FPGA chip and the Verilog-HDL hardware programming language. The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis, proving its randomness and high performance. Finally, an image encryption system based on PRNG is proposed and implemented on FPGA, which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things (IoT).</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/ac3cb2</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>decryption system ; FPGA ; image encryption ; memristive Hopfield neural network (MHNN) ; pseudo-random number generator (PRNG)</subject><ispartof>Chinese physics B, 2022-01, Vol.31 (2), p.20505-130</ispartof><rights>2022 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-cac00f6cb19e6aba74b59c4218729b7b3e7c226c2f9101ae26a631795aa261723</citedby><cites>FETCH-LOGICAL-c312t-cac00f6cb19e6aba74b59c4218729b7b3e7c226c2f9101ae26a631795aa261723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/ac3cb2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,4010,27900,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Zhang, Zinan</creatorcontrib><creatorcontrib>Shen, Hui</creatorcontrib><creatorcontrib>Huang, Yuanyuan</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><creatorcontrib>Du, Sichun</creatorcontrib><title>FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number generator (PRNG) based on MHNN is proposed. The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator, which effectively ensures the randomness of PRNG. The experiments in this paper comply with the IEEE 754-1985 high precision 32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7Z020CLG400-2 FPGA chip and the Verilog-HDL hardware programming language. The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis, proving its randomness and high performance. Finally, an image encryption system based on PRNG is proposed and implemented on FPGA, which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things (IoT).</description><subject>decryption system</subject><subject>FPGA</subject><subject>image encryption</subject><subject>memristive Hopfield neural network (MHNN)</subject><subject>pseudo-random number generator (PRNG)</subject><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhnNQsH7cPebmxdok22a7x1JsKxQtoucwm51dU_cjJFuX-jf8w2ZZ0ZMQGHh55s3wEHLN2R1n8_mEy3g65mwmJ6AjnYoTMvqNzsi593vGJGciGpGv1W69oKayJVZYt9CapqZQZyGCAinW2h3tEFpbGj0ATU6B1tjR3fPjmqbgMaM9QiusnPGt-UC6aWxusMwCd3BQhtF2jXunnWnfAuktahNi0IEeWgsHmQlHXJLTHEqPVz_zgryu7l-Wm_H2af2wXGzHOuKiHWvQjOVSpzxBCSnE03SW6Kng81gkaZxGGGshpBZ5whkHFBJkxONkBiAkj0V0QW6G3g7qHOpC7ZuDq8OP6rPoSoWCifAY70k2kNo13jvMlXVBkDsqzlSvXPV-Ve9XDcrDyu2wYhr7V_wv_g07KYa2</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yu, Fei</creator><creator>Zhang, Zinan</creator><creator>Shen, Hui</creator><creator>Huang, Yuanyuan</creator><creator>Cai, Shuo</creator><creator>Du, Sichun</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>School of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410114,China%College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220101</creationdate><title>FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient</title><author>Yu, Fei ; Zhang, Zinan ; Shen, Hui ; Huang, Yuanyuan ; Cai, Shuo ; Du, Sichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-cac00f6cb19e6aba74b59c4218729b7b3e7c226c2f9101ae26a631795aa261723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>decryption system</topic><topic>FPGA</topic><topic>image encryption</topic><topic>memristive Hopfield neural network (MHNN)</topic><topic>pseudo-random number generator (PRNG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fei</creatorcontrib><creatorcontrib>Zhang, Zinan</creatorcontrib><creatorcontrib>Shen, Hui</creatorcontrib><creatorcontrib>Huang, Yuanyuan</creatorcontrib><creatorcontrib>Cai, Shuo</creatorcontrib><creatorcontrib>Du, Sichun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Fei</au><au>Zhang, Zinan</au><au>Shen, Hui</au><au>Huang, Yuanyuan</au><au>Cai, Shuo</au><au>Du, Sichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>20505</spage><epage>130</epage><pages>20505-130</pages><issn>1674-1056</issn><abstract>A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number generator (PRNG) based on MHNN is proposed. The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator, which effectively ensures the randomness of PRNG. The experiments in this paper comply with the IEEE 754-1985 high precision 32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7Z020CLG400-2 FPGA chip and the Verilog-HDL hardware programming language. The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis, proving its randomness and high performance. Finally, an image encryption system based on PRNG is proposed and implemented on FPGA, which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things (IoT).</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/ac3cb2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2022-01, Vol.31 (2), p.20505-130 |
issn | 1674-1056 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1674_1056_ac3cb2 |
source | IOP Publishing Journals |
subjects | decryption system FPGA image encryption memristive Hopfield neural network (MHNN) pseudo-random number generator (PRNG) |
title | FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA%20implementation%20and%20image%20encryption%20application%20of%20a%20new%20PRNG%20based%20on%20a%20memristive%20Hopfield%20neural%20network%20with%20a%20special%20activation%20gradient&rft.jtitle=Chinese%20physics%20B&rft.au=Yu,%20Fei&rft.date=2022-01-01&rft.volume=31&rft.issue=2&rft.spage=20505&rft.epage=130&rft.pages=20505-130&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/ac3cb2&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202202012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202202012&rfr_iscdi=true |