A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures

The celebrated (1+1)-dimensional Korteweg de–Vries (KdV) equation and its (2+1)-dimensional extension, the Kadomtsev–Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2020-07, Vol.29 (8), p.80502
1. Verfasser: Lou, Sen-Yue
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 80502
container_title Chinese physics B
container_volume 29
creator Lou, Sen-Yue
description The celebrated (1+1)-dimensional Korteweg de–Vries (KdV) equation and its (2+1)-dimensional extension, the Kadomtsev–Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation. A novel (2+1)-dimensional KdV extension, the cKP3–4 equation, is obtained by combining the third member (KP3, the usual KP equation) and the fourth member (KP4) of the KP hierarchy. The integrability of the cKP3–4 equation is guaranteed by the existence of the Lax pair and dual Lax pair. The cKP3–4 system can be bilinearized by using Hirota’s bilinear operators after introducing an additional auxiliary variable. Exact solutions of the cKP3–4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations. For instance, the soliton molecules and the missing D–Alembert type solutions (the arbitrary travelling waves moving in one direction with a fixed model dependent velocity) including periodic kink molecules, periodic kink-antikink molecules, few-cycle solitons, and envelope solitons exist for the cKP3–4 equation but not for the separated KP3 equation and the KP4 equation.
doi_str_mv 10.1088/1674-1056/ab9699
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1674_1056_ab9699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1674_1056_ab9699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-41b43bc84b046e027f2d75a852dc8960a7d412a90c2e444e491d49b196a811893</originalsourceid><addsrcrecordid>eNo9kEtLxDAYRbNQcBzdu8xSkTr50jRNlsPgCwdc-NiGvKqRTDsmqeK_1zri6sK5cOFchE6AXAARYgG8ZRWQhi-0kVzKPTT7RwfoMOc3QjgQWs_QwxL3w4eP-JSew1nlwsb3OQy9jjj0xb8kbaLHd-4Z-_dRl58Gf4byirfejjHohPMQx1-cSxptGZPPR2i_0zH747-co6ery8fVTbW-v75dLdeVpawuFQPDamMFM4RxT2jbUdc2WjTUWSE50a1jQLUklnrGmGcSHJMGJNcCQMh6jshu16Yh5-Q7tU1ho9OXAqKmI9RkrSZrtTui_gZGMVKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures</title><source>IOP Publishing Journals</source><creator>Lou, Sen-Yue</creator><creatorcontrib>Lou, Sen-Yue</creatorcontrib><description>The celebrated (1+1)-dimensional Korteweg de–Vries (KdV) equation and its (2+1)-dimensional extension, the Kadomtsev–Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation. A novel (2+1)-dimensional KdV extension, the cKP3–4 equation, is obtained by combining the third member (KP3, the usual KP equation) and the fourth member (KP4) of the KP hierarchy. The integrability of the cKP3–4 equation is guaranteed by the existence of the Lax pair and dual Lax pair. The cKP3–4 system can be bilinearized by using Hirota’s bilinear operators after introducing an additional auxiliary variable. Exact solutions of the cKP3–4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations. For instance, the soliton molecules and the missing D–Alembert type solutions (the arbitrary travelling waves moving in one direction with a fixed model dependent velocity) including periodic kink molecules, periodic kink-antikink molecules, few-cycle solitons, and envelope solitons exist for the cKP3–4 equation but not for the separated KP3 equation and the KP4 equation.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/ab9699</identifier><language>eng</language><ispartof>Chinese physics B, 2020-07, Vol.29 (8), p.80502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-41b43bc84b046e027f2d75a852dc8960a7d412a90c2e444e491d49b196a811893</citedby><cites>FETCH-LOGICAL-c243t-41b43bc84b046e027f2d75a852dc8960a7d412a90c2e444e491d49b196a811893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Lou, Sen-Yue</creatorcontrib><title>A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures</title><title>Chinese physics B</title><description>The celebrated (1+1)-dimensional Korteweg de–Vries (KdV) equation and its (2+1)-dimensional extension, the Kadomtsev–Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation. A novel (2+1)-dimensional KdV extension, the cKP3–4 equation, is obtained by combining the third member (KP3, the usual KP equation) and the fourth member (KP4) of the KP hierarchy. The integrability of the cKP3–4 equation is guaranteed by the existence of the Lax pair and dual Lax pair. The cKP3–4 system can be bilinearized by using Hirota’s bilinear operators after introducing an additional auxiliary variable. Exact solutions of the cKP3–4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations. For instance, the soliton molecules and the missing D–Alembert type solutions (the arbitrary travelling waves moving in one direction with a fixed model dependent velocity) including periodic kink molecules, periodic kink-antikink molecules, few-cycle solitons, and envelope solitons exist for the cKP3–4 equation but not for the separated KP3 equation and the KP4 equation.</description><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAYRbNQcBzdu8xSkTr50jRNlsPgCwdc-NiGvKqRTDsmqeK_1zri6sK5cOFchE6AXAARYgG8ZRWQhi-0kVzKPTT7RwfoMOc3QjgQWs_QwxL3w4eP-JSew1nlwsb3OQy9jjj0xb8kbaLHd-4Z-_dRl58Gf4byirfejjHohPMQx1-cSxptGZPPR2i_0zH747-co6ery8fVTbW-v75dLdeVpawuFQPDamMFM4RxT2jbUdc2WjTUWSE50a1jQLUklnrGmGcSHJMGJNcCQMh6jshu16Yh5-Q7tU1ho9OXAqKmI9RkrSZrtTui_gZGMVKw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Lou, Sen-Yue</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures</title><author>Lou, Sen-Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-41b43bc84b046e027f2d75a852dc8960a7d412a90c2e444e491d49b196a811893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Sen-Yue</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Sen-Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures</atitle><jtitle>Chinese physics B</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>29</volume><issue>8</issue><spage>80502</spage><pages>80502-</pages><issn>1674-1056</issn><abstract>The celebrated (1+1)-dimensional Korteweg de–Vries (KdV) equation and its (2+1)-dimensional extension, the Kadomtsev–Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation. A novel (2+1)-dimensional KdV extension, the cKP3–4 equation, is obtained by combining the third member (KP3, the usual KP equation) and the fourth member (KP4) of the KP hierarchy. The integrability of the cKP3–4 equation is guaranteed by the existence of the Lax pair and dual Lax pair. The cKP3–4 system can be bilinearized by using Hirota’s bilinear operators after introducing an additional auxiliary variable. Exact solutions of the cKP3–4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations. For instance, the soliton molecules and the missing D–Alembert type solutions (the arbitrary travelling waves moving in one direction with a fixed model dependent velocity) including periodic kink molecules, periodic kink-antikink molecules, few-cycle solitons, and envelope solitons exist for the cKP3–4 equation but not for the separated KP3 equation and the KP4 equation.</abstract><doi>10.1088/1674-1056/ab9699</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2020-07, Vol.29 (8), p.80502
issn 1674-1056
language eng
recordid cdi_crossref_primary_10_1088_1674_1056_ab9699
source IOP Publishing Journals
title A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20(2+1)-dimensional%20integrable%20KdV%20equation%20with%20peculiar%20solution%20structures&rft.jtitle=Chinese%20physics%20B&rft.au=Lou,%20Sen-Yue&rft.date=2020-07-01&rft.volume=29&rft.issue=8&rft.spage=80502&rft.pages=80502-&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/ab9699&rft_dat=%3Ccrossref%3E10_1088_1674_1056_ab9699%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true