Weighted polygamy inequalities of multiparty q-expected quantum entanglement

Based on q -expected entanglement measure for q ⩾ 1 , we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th-power of the q -expected entanglement of assistance for 0 ⩽ β ⩽ 1 and the Hamming weight of the binary vector related wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser physics letters 2022-07, Vol.19 (7), p.75201
Hauptverfasser: Ma, Jiangshan, Wu, Hongxing, Li, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75201
container_title Laser physics letters
container_volume 19
creator Ma, Jiangshan
Wu, Hongxing
Li, Bo
description Based on q -expected entanglement measure for q ⩾ 1 , we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th-power of the q -expected entanglement of assistance for 0 ⩽ β ⩽ 1 and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.
doi_str_mv 10.1088/1612-202X/ac6e70
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1612_202X_ac6e70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>lplac6e70</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-bec3460779cd2bdcef7c11a25e885ac0e9cc8d6f247f35e7a339e523201efa433</originalsourceid><addsrcrecordid>eNp1UEtLxDAYDKLgunr3mB9g3TzaJj3K4gsWvCh6C9n0S83S1yYp2H9vS2Vvnr7hY2aYGYRuKbmnRMoNzSlLGGFfG21yEOQMrU6v8xOm9BJdhXAghJNMFCu0-wRXfUcocd_VY6WbEbsWjoOuXXQQcGdxM9TR9drHER8T-OnBzPSJ0sahwdBG3VY1NBO4RhdW1wFu_u4afTw9vm9fkt3b8-v2YZcYmsqY7MHwNCdCFKZk-9KAFYZSzTKQMtOGQGGMLHPLUmF5BkJzXkDG-BQfrE45XyOy-BrfheDBqt67RvtRUaLmNdRcV83V1bLGJLlbJK7r1aEbfDsF_J_-CydtY0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ma, Jiangshan ; Wu, Hongxing ; Li, Bo</creator><creatorcontrib>Ma, Jiangshan ; Wu, Hongxing ; Li, Bo</creatorcontrib><description>Based on q -expected entanglement measure for q ⩾ 1 , we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th-power of the q -expected entanglement of assistance for 0 ⩽ β ⩽ 1 and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.</description><identifier>ISSN: 1612-2011</identifier><identifier>EISSN: 1612-202X</identifier><identifier>DOI: 10.1088/1612-202X/ac6e70</identifier><identifier>CODEN: LPLABC</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>multiparty entanglement ; the entanglement distribution ; weighted polygamy inequalities</subject><ispartof>Laser physics letters, 2022-07, Vol.19 (7), p.75201</ispartof><rights>2022 Astro Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-bec3460779cd2bdcef7c11a25e885ac0e9cc8d6f247f35e7a339e523201efa433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1612-202X/ac6e70/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Ma, Jiangshan</creatorcontrib><creatorcontrib>Wu, Hongxing</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><title>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</title><title>Laser physics letters</title><addtitle>LPL</addtitle><addtitle>Laser Phys. Lett</addtitle><description>Based on q -expected entanglement measure for q ⩾ 1 , we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th-power of the q -expected entanglement of assistance for 0 ⩽ β ⩽ 1 and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.</description><subject>multiparty entanglement</subject><subject>the entanglement distribution</subject><subject>weighted polygamy inequalities</subject><issn>1612-2011</issn><issn>1612-202X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAYDKLgunr3mB9g3TzaJj3K4gsWvCh6C9n0S83S1yYp2H9vS2Vvnr7hY2aYGYRuKbmnRMoNzSlLGGFfG21yEOQMrU6v8xOm9BJdhXAghJNMFCu0-wRXfUcocd_VY6WbEbsWjoOuXXQQcGdxM9TR9drHER8T-OnBzPSJ0sahwdBG3VY1NBO4RhdW1wFu_u4afTw9vm9fkt3b8-v2YZcYmsqY7MHwNCdCFKZk-9KAFYZSzTKQMtOGQGGMLHPLUmF5BkJzXkDG-BQfrE45XyOy-BrfheDBqt67RvtRUaLmNdRcV83V1bLGJLlbJK7r1aEbfDsF_J_-CydtY0o</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ma, Jiangshan</creator><creator>Wu, Hongxing</creator><creator>Li, Bo</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</title><author>Ma, Jiangshan ; Wu, Hongxing ; Li, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-bec3460779cd2bdcef7c11a25e885ac0e9cc8d6f247f35e7a339e523201efa433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>multiparty entanglement</topic><topic>the entanglement distribution</topic><topic>weighted polygamy inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jiangshan</creatorcontrib><creatorcontrib>Wu, Hongxing</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><collection>CrossRef</collection><jtitle>Laser physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jiangshan</au><au>Wu, Hongxing</au><au>Li, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</atitle><jtitle>Laser physics letters</jtitle><stitle>LPL</stitle><addtitle>Laser Phys. Lett</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>19</volume><issue>7</issue><spage>75201</spage><pages>75201-</pages><issn>1612-2011</issn><eissn>1612-202X</eissn><coden>LPLABC</coden><abstract>Based on q -expected entanglement measure for q ⩾ 1 , we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th-power of the q -expected entanglement of assistance for 0 ⩽ β ⩽ 1 and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.</abstract><pub>IOP Publishing</pub><doi>10.1088/1612-202X/ac6e70</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-2011
ispartof Laser physics letters, 2022-07, Vol.19 (7), p.75201
issn 1612-2011
1612-202X
language eng
recordid cdi_crossref_primary_10_1088_1612_202X_ac6e70
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects multiparty entanglement
the entanglement distribution
weighted polygamy inequalities
title Weighted polygamy inequalities of multiparty q-expected quantum entanglement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20polygamy%20inequalities%20of%20multiparty%20q-expected%20quantum%20entanglement&rft.jtitle=Laser%20physics%20letters&rft.au=Ma,%20Jiangshan&rft.date=2022-07-01&rft.volume=19&rft.issue=7&rft.spage=75201&rft.pages=75201-&rft.issn=1612-2011&rft.eissn=1612-202X&rft.coden=LPLABC&rft_id=info:doi/10.1088/1612-202X/ac6e70&rft_dat=%3Ciop_cross%3Elplac6e70%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true