Weighted polygamy inequalities of multiparty q-expected quantum entanglement
Based on q -expected entanglement measure for q ⩾ 1 , we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the β th-power of the q -expected entanglement of assistance for 0 ⩽ β ⩽ 1 and the Hamming weight of the binary vector related wi...
Gespeichert in:
Veröffentlicht in: | Laser physics letters 2022-07, Vol.19 (7), p.75201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 75201 |
container_title | Laser physics letters |
container_volume | 19 |
creator | Ma, Jiangshan Wu, Hongxing Li, Bo |
description | Based on
q
-expected entanglement measure for
q
⩾
1
, we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the
β
th-power of the
q
-expected entanglement of assistance for
0
⩽
β
⩽
1
and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution. |
doi_str_mv | 10.1088/1612-202X/ac6e70 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1612_202X_ac6e70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>lplac6e70</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-bec3460779cd2bdcef7c11a25e885ac0e9cc8d6f247f35e7a339e523201efa433</originalsourceid><addsrcrecordid>eNp1UEtLxDAYDKLgunr3mB9g3TzaJj3K4gsWvCh6C9n0S83S1yYp2H9vS2Vvnr7hY2aYGYRuKbmnRMoNzSlLGGFfG21yEOQMrU6v8xOm9BJdhXAghJNMFCu0-wRXfUcocd_VY6WbEbsWjoOuXXQQcGdxM9TR9drHER8T-OnBzPSJ0sahwdBG3VY1NBO4RhdW1wFu_u4afTw9vm9fkt3b8-v2YZcYmsqY7MHwNCdCFKZk-9KAFYZSzTKQMtOGQGGMLHPLUmF5BkJzXkDG-BQfrE45XyOy-BrfheDBqt67RvtRUaLmNdRcV83V1bLGJLlbJK7r1aEbfDsF_J_-CydtY0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ma, Jiangshan ; Wu, Hongxing ; Li, Bo</creator><creatorcontrib>Ma, Jiangshan ; Wu, Hongxing ; Li, Bo</creatorcontrib><description>Based on
q
-expected entanglement measure for
q
⩾
1
, we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the
β
th-power of the
q
-expected entanglement of assistance for
0
⩽
β
⩽
1
and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.</description><identifier>ISSN: 1612-2011</identifier><identifier>EISSN: 1612-202X</identifier><identifier>DOI: 10.1088/1612-202X/ac6e70</identifier><identifier>CODEN: LPLABC</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>multiparty entanglement ; the entanglement distribution ; weighted polygamy inequalities</subject><ispartof>Laser physics letters, 2022-07, Vol.19 (7), p.75201</ispartof><rights>2022 Astro Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-bec3460779cd2bdcef7c11a25e885ac0e9cc8d6f247f35e7a339e523201efa433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1612-202X/ac6e70/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Ma, Jiangshan</creatorcontrib><creatorcontrib>Wu, Hongxing</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><title>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</title><title>Laser physics letters</title><addtitle>LPL</addtitle><addtitle>Laser Phys. Lett</addtitle><description>Based on
q
-expected entanglement measure for
q
⩾
1
, we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the
β
th-power of the
q
-expected entanglement of assistance for
0
⩽
β
⩽
1
and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.</description><subject>multiparty entanglement</subject><subject>the entanglement distribution</subject><subject>weighted polygamy inequalities</subject><issn>1612-2011</issn><issn>1612-202X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAYDKLgunr3mB9g3TzaJj3K4gsWvCh6C9n0S83S1yYp2H9vS2Vvnr7hY2aYGYRuKbmnRMoNzSlLGGFfG21yEOQMrU6v8xOm9BJdhXAghJNMFCu0-wRXfUcocd_VY6WbEbsWjoOuXXQQcGdxM9TR9drHER8T-OnBzPSJ0sahwdBG3VY1NBO4RhdW1wFu_u4afTw9vm9fkt3b8-v2YZcYmsqY7MHwNCdCFKZk-9KAFYZSzTKQMtOGQGGMLHPLUmF5BkJzXkDG-BQfrE45XyOy-BrfheDBqt67RvtRUaLmNdRcV83V1bLGJLlbJK7r1aEbfDsF_J_-CydtY0o</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ma, Jiangshan</creator><creator>Wu, Hongxing</creator><creator>Li, Bo</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</title><author>Ma, Jiangshan ; Wu, Hongxing ; Li, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-bec3460779cd2bdcef7c11a25e885ac0e9cc8d6f247f35e7a339e523201efa433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>multiparty entanglement</topic><topic>the entanglement distribution</topic><topic>weighted polygamy inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jiangshan</creatorcontrib><creatorcontrib>Wu, Hongxing</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><collection>CrossRef</collection><jtitle>Laser physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jiangshan</au><au>Wu, Hongxing</au><au>Li, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted polygamy inequalities of multiparty q-expected quantum entanglement</atitle><jtitle>Laser physics letters</jtitle><stitle>LPL</stitle><addtitle>Laser Phys. Lett</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>19</volume><issue>7</issue><spage>75201</spage><pages>75201-</pages><issn>1612-2011</issn><eissn>1612-202X</eissn><coden>LPLABC</coden><abstract>Based on
q
-expected entanglement measure for
q
⩾
1
, we generalize the polygamy inequality for multiparty entanglement in arbitrary-dimensional quantum systems. By using the
β
th-power of the
q
-expected entanglement of assistance for
0
⩽
β
⩽
1
and the Hamming weight of the binary vector related with the distribution of subsystems, a class of weighted polygamy inequalities in arbitrary-dimensional quantum systems is established. We further demonstrate that our class of weighted polygamy inequalities can be improved even into tighter inequalities, under some conditions, with auxiliary entanglement in bipartite subsystems. Our results may provide new ideas for studying the polygamy constraints of multiparty entanglement and better characterizing the entanglement distribution.</abstract><pub>IOP Publishing</pub><doi>10.1088/1612-202X/ac6e70</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-2011 |
ispartof | Laser physics letters, 2022-07, Vol.19 (7), p.75201 |
issn | 1612-2011 1612-202X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1612_202X_ac6e70 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | multiparty entanglement the entanglement distribution weighted polygamy inequalities |
title | Weighted polygamy inequalities of multiparty q-expected quantum entanglement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20polygamy%20inequalities%20of%20multiparty%20q-expected%20quantum%20entanglement&rft.jtitle=Laser%20physics%20letters&rft.au=Ma,%20Jiangshan&rft.date=2022-07-01&rft.volume=19&rft.issue=7&rft.spage=75201&rft.pages=75201-&rft.issn=1612-2011&rft.eissn=1612-202X&rft.coden=LPLABC&rft_id=info:doi/10.1088/1612-202X/ac6e70&rft_dat=%3Ciop_cross%3Elplac6e70%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |