Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images

Optical coherence tomography is radiation-free, and it is considered a tool of optical biopsy. Classification of normal and cancerous tissues is very important for the guidance of surgeons. Here, we develop the morphological feature analysis-based classification (MFAC) method, combining it with mach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser physics letters 2019-09, Vol.16 (9), p.95602
Hauptverfasser: Luo, Site, Fan, Yingwei, Chang, Wei, Liao, Hongen, Kang, Hongxiang, Huo, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 95602
container_title Laser physics letters
container_volume 16
creator Luo, Site
Fan, Yingwei
Chang, Wei
Liao, Hongen
Kang, Hongxiang
Huo, Li
description Optical coherence tomography is radiation-free, and it is considered a tool of optical biopsy. Classification of normal and cancerous tissues is very important for the guidance of surgeons. Here, we develop the morphological feature analysis-based classification (MFAC) method, combining it with machine learning to identify cancerous tissues. We extract five quantitative morphological features from one OCT image through the structured analysis. Five classifiers are involved to make a classification: the support vector machine, the K-nearest neighbor, the random forest, logic regression, and the conventional threshold method. Sensitivity, specificity, and accuracy are used to evaluate these classifiers and are compared with each other. We launched the experimental research of the imaging of ex vivo patients' stomach cancerous tissue with the OCT system. The results showed the three additional features specially designed for stomach cancer are remarkably better than the traditional image feature. The best feature demonstrated over 95% accuracy under all five classifiers. The designed feature based on the layer structure of the stomach tissue is significantly effective. This MFAC method will be used to image the in vivo tissue in clinical applications in the future.
doi_str_mv 10.1088/1612-202X/ab3638
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1612_202X_ab3638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>lplab3638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-466075ea20f35a96ec9a28ae72bd09a91402b6495c32d892e3dbb90178a4c97b3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM3pjIfRs58sjqviSKrGAxGZdHDtJlcSRnQz570kp6oSY7nT33tPdj5BbBg8M8nzDUsYjDvxrg4VIRX5GVqfR-aln7JJchbAHEJBkckXGbYshNLbRODaup87Seuqwp2F0Heqaauy18XQKTV_Rzvmhdq2rFnlLrcFx8oZij-0cmkCtdx11w_iz1a423ixmuiS5yuNQz7TpsDLhmlxYbIO5-a1r8vn89LF9jXbvL2_bx12kBeNjFKcpZIlBDlYkKFOjJfIcTcaLEiRKFgMv0lgmWvAyl9yIsigksCzHWMusEGsCx1ztXQjeWDX45QI_KwbqQE0dsKgDInWktljuj5bGDWrvJr_8Fv6T3_0hb4d2kSqpQCYpcDWUVnwDWMx-AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images</title><source>Institute of Physics Journals</source><creator>Luo, Site ; Fan, Yingwei ; Chang, Wei ; Liao, Hongen ; Kang, Hongxiang ; Huo, Li</creator><creatorcontrib>Luo, Site ; Fan, Yingwei ; Chang, Wei ; Liao, Hongen ; Kang, Hongxiang ; Huo, Li</creatorcontrib><description>Optical coherence tomography is radiation-free, and it is considered a tool of optical biopsy. Classification of normal and cancerous tissues is very important for the guidance of surgeons. Here, we develop the morphological feature analysis-based classification (MFAC) method, combining it with machine learning to identify cancerous tissues. We extract five quantitative morphological features from one OCT image through the structured analysis. Five classifiers are involved to make a classification: the support vector machine, the K-nearest neighbor, the random forest, logic regression, and the conventional threshold method. Sensitivity, specificity, and accuracy are used to evaluate these classifiers and are compared with each other. We launched the experimental research of the imaging of ex vivo patients' stomach cancerous tissue with the OCT system. The results showed the three additional features specially designed for stomach cancer are remarkably better than the traditional image feature. The best feature demonstrated over 95% accuracy under all five classifiers. The designed feature based on the layer structure of the stomach tissue is significantly effective. This MFAC method will be used to image the in vivo tissue in clinical applications in the future.</description><identifier>ISSN: 1612-2011</identifier><identifier>EISSN: 1612-202X</identifier><identifier>DOI: 10.1088/1612-202X/ab3638</identifier><identifier>CODEN: LPLABC</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>image analysis ; morphological feature ; optical coherence tomography (OCT) ; stomach tumor imaging</subject><ispartof>Laser physics letters, 2019-09, Vol.16 (9), p.95602</ispartof><rights>2019 Astro Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-466075ea20f35a96ec9a28ae72bd09a91402b6495c32d892e3dbb90178a4c97b3</citedby><cites>FETCH-LOGICAL-c312t-466075ea20f35a96ec9a28ae72bd09a91402b6495c32d892e3dbb90178a4c97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1612-202X/ab3638/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Luo, Site</creatorcontrib><creatorcontrib>Fan, Yingwei</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Liao, Hongen</creatorcontrib><creatorcontrib>Kang, Hongxiang</creatorcontrib><creatorcontrib>Huo, Li</creatorcontrib><title>Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images</title><title>Laser physics letters</title><addtitle>LPL</addtitle><addtitle>Laser Phys. Lett</addtitle><description>Optical coherence tomography is radiation-free, and it is considered a tool of optical biopsy. Classification of normal and cancerous tissues is very important for the guidance of surgeons. Here, we develop the morphological feature analysis-based classification (MFAC) method, combining it with machine learning to identify cancerous tissues. We extract five quantitative morphological features from one OCT image through the structured analysis. Five classifiers are involved to make a classification: the support vector machine, the K-nearest neighbor, the random forest, logic regression, and the conventional threshold method. Sensitivity, specificity, and accuracy are used to evaluate these classifiers and are compared with each other. We launched the experimental research of the imaging of ex vivo patients' stomach cancerous tissue with the OCT system. The results showed the three additional features specially designed for stomach cancer are remarkably better than the traditional image feature. The best feature demonstrated over 95% accuracy under all five classifiers. The designed feature based on the layer structure of the stomach tissue is significantly effective. This MFAC method will be used to image the in vivo tissue in clinical applications in the future.</description><subject>image analysis</subject><subject>morphological feature</subject><subject>optical coherence tomography (OCT)</subject><subject>stomach tumor imaging</subject><issn>1612-2011</issn><issn>1612-202X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwM3pjIfRs58sjqviSKrGAxGZdHDtJlcSRnQz570kp6oSY7nT33tPdj5BbBg8M8nzDUsYjDvxrg4VIRX5GVqfR-aln7JJchbAHEJBkckXGbYshNLbRODaup87Seuqwp2F0Heqaauy18XQKTV_Rzvmhdq2rFnlLrcFx8oZij-0cmkCtdx11w_iz1a423ixmuiS5yuNQz7TpsDLhmlxYbIO5-a1r8vn89LF9jXbvL2_bx12kBeNjFKcpZIlBDlYkKFOjJfIcTcaLEiRKFgMv0lgmWvAyl9yIsigksCzHWMusEGsCx1ztXQjeWDX45QI_KwbqQE0dsKgDInWktljuj5bGDWrvJr_8Fv6T3_0hb4d2kSqpQCYpcDWUVnwDWMx-AA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Luo, Site</creator><creator>Fan, Yingwei</creator><creator>Chang, Wei</creator><creator>Liao, Hongen</creator><creator>Kang, Hongxiang</creator><creator>Huo, Li</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images</title><author>Luo, Site ; Fan, Yingwei ; Chang, Wei ; Liao, Hongen ; Kang, Hongxiang ; Huo, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-466075ea20f35a96ec9a28ae72bd09a91402b6495c32d892e3dbb90178a4c97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>image analysis</topic><topic>morphological feature</topic><topic>optical coherence tomography (OCT)</topic><topic>stomach tumor imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Site</creatorcontrib><creatorcontrib>Fan, Yingwei</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Liao, Hongen</creatorcontrib><creatorcontrib>Kang, Hongxiang</creatorcontrib><creatorcontrib>Huo, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Laser physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Site</au><au>Fan, Yingwei</au><au>Chang, Wei</au><au>Liao, Hongen</au><au>Kang, Hongxiang</au><au>Huo, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images</atitle><jtitle>Laser physics letters</jtitle><stitle>LPL</stitle><addtitle>Laser Phys. Lett</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>16</volume><issue>9</issue><spage>95602</spage><pages>95602-</pages><issn>1612-2011</issn><eissn>1612-202X</eissn><coden>LPLABC</coden><abstract>Optical coherence tomography is radiation-free, and it is considered a tool of optical biopsy. Classification of normal and cancerous tissues is very important for the guidance of surgeons. Here, we develop the morphological feature analysis-based classification (MFAC) method, combining it with machine learning to identify cancerous tissues. We extract five quantitative morphological features from one OCT image through the structured analysis. Five classifiers are involved to make a classification: the support vector machine, the K-nearest neighbor, the random forest, logic regression, and the conventional threshold method. Sensitivity, specificity, and accuracy are used to evaluate these classifiers and are compared with each other. We launched the experimental research of the imaging of ex vivo patients' stomach cancerous tissue with the OCT system. The results showed the three additional features specially designed for stomach cancer are remarkably better than the traditional image feature. The best feature demonstrated over 95% accuracy under all five classifiers. The designed feature based on the layer structure of the stomach tissue is significantly effective. This MFAC method will be used to image the in vivo tissue in clinical applications in the future.</abstract><pub>IOP Publishing</pub><doi>10.1088/1612-202X/ab3638</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-2011
ispartof Laser physics letters, 2019-09, Vol.16 (9), p.95602
issn 1612-2011
1612-202X
language eng
recordid cdi_crossref_primary_10_1088_1612_202X_ab3638
source Institute of Physics Journals
subjects image analysis
morphological feature
optical coherence tomography (OCT)
stomach tumor imaging
title Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20human%20stomach%20cancer%20using%20morphological%20feature%20analysis%20from%20optical%20coherence%20tomography%20images&rft.jtitle=Laser%20physics%20letters&rft.au=Luo,%20Site&rft.date=2019-09-01&rft.volume=16&rft.issue=9&rft.spage=95602&rft.pages=95602-&rft.issn=1612-2011&rft.eissn=1612-202X&rft.coden=LPLABC&rft_id=info:doi/10.1088/1612-202X/ab3638&rft_dat=%3Ciop_cross%3Elplab3638%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true