Precise position measurement of an atom using superposition of two standing wave fields

We present a scheme that provides a strong basis for precise localization of atoms, using superposition of two standing wave fields in a three level Λ-type gain assisted model. We show how atomic interference and diffraction occur at a particular node or antinode region of the standing wave fields....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser physics 2017-04, Vol.27 (4), p.45202
Hauptverfasser: Idrees, M, Bacha, B A, Javed, M, Ullah, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45202
container_title Laser physics
container_volume 27
creator Idrees, M
Bacha, B A
Javed, M
Ullah, S A
description We present a scheme that provides a strong basis for precise localization of atoms, using superposition of two standing wave fields in a three level Λ-type gain assisted model. We show how atomic interference and diffraction occur at a particular node or antinode region of the standing wave fields. Two, three, four and even single localized peaks of atoms are observed in both full-wavelength and sub-half-wavelength domains, with 100 percent localization probability in a single peak. Dark lines appearing in the node region of the standing wave fields show strong evidence for atomic destructive interference. The proposed scheme allows for efficient localization of an atom to a particular point.
doi_str_mv 10.1088/1555-6611/aa5680
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1555_6611_aa5680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>lpaa5680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-94f084e872bdff2870efd146a06a470ad0c0c893a16ab6c843f8d5c3d299e84c3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePebkybqTNknToyx-wYIeFL2F2XxIl21TktbF_96WlT2Jp3nMe28YfoRcMrhhoNSCCSEyKRlbIAqp4IjMDqvjUYPgo4aPU3KW0gaAcw5sRt5fojN1crQLqe7r0NLGYRqia1zb0-ApthT70NAh1e0nTUPn4iE62v0u0NRjayd3h1-O-tptbTonJx63yV38zjl5u797XT5mq-eHp-XtKjMFY31WcQ-KO1Xma-t9rkpw3jIuESTyEtCCAaOqApnEtTSKF15ZYQqbV5VT3BRzAvu7JoaUovO6i3WD8Vsz0BMYPVHQEwW9BzNWrveVOnR6E4bYjg_-F7_6I77tdF5qroGLHHLdWV_8AGuAcm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Precise position measurement of an atom using superposition of two standing wave fields</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Idrees, M ; Bacha, B A ; Javed, M ; Ullah, S A</creator><creatorcontrib>Idrees, M ; Bacha, B A ; Javed, M ; Ullah, S A</creatorcontrib><description>We present a scheme that provides a strong basis for precise localization of atoms, using superposition of two standing wave fields in a three level Λ-type gain assisted model. We show how atomic interference and diffraction occur at a particular node or antinode region of the standing wave fields. Two, three, four and even single localized peaks of atoms are observed in both full-wavelength and sub-half-wavelength domains, with 100 percent localization probability in a single peak. Dark lines appearing in the node region of the standing wave fields show strong evidence for atomic destructive interference. The proposed scheme allows for efficient localization of an atom to a particular point.</description><identifier>ISSN: 1054-660X</identifier><identifier>EISSN: 1555-6611</identifier><identifier>DOI: 10.1088/1555-6611/aa5680</identifier><identifier>CODEN: LAPHEJ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atom localization ; quantum coherence ; three level atom</subject><ispartof>Laser physics, 2017-04, Vol.27 (4), p.45202</ispartof><rights>2017 Astro Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-94f084e872bdff2870efd146a06a470ad0c0c893a16ab6c843f8d5c3d299e84c3</citedby><cites>FETCH-LOGICAL-c311t-94f084e872bdff2870efd146a06a470ad0c0c893a16ab6c843f8d5c3d299e84c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1555-6611/aa5680/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Idrees, M</creatorcontrib><creatorcontrib>Bacha, B A</creatorcontrib><creatorcontrib>Javed, M</creatorcontrib><creatorcontrib>Ullah, S A</creatorcontrib><title>Precise position measurement of an atom using superposition of two standing wave fields</title><title>Laser physics</title><addtitle>LP</addtitle><addtitle>Laser Phys</addtitle><description>We present a scheme that provides a strong basis for precise localization of atoms, using superposition of two standing wave fields in a three level Λ-type gain assisted model. We show how atomic interference and diffraction occur at a particular node or antinode region of the standing wave fields. Two, three, four and even single localized peaks of atoms are observed in both full-wavelength and sub-half-wavelength domains, with 100 percent localization probability in a single peak. Dark lines appearing in the node region of the standing wave fields show strong evidence for atomic destructive interference. The proposed scheme allows for efficient localization of an atom to a particular point.</description><subject>atom localization</subject><subject>quantum coherence</subject><subject>three level atom</subject><issn>1054-660X</issn><issn>1555-6611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePebkybqTNknToyx-wYIeFL2F2XxIl21TktbF_96WlT2Jp3nMe28YfoRcMrhhoNSCCSEyKRlbIAqp4IjMDqvjUYPgo4aPU3KW0gaAcw5sRt5fojN1crQLqe7r0NLGYRqia1zb0-ApthT70NAh1e0nTUPn4iE62v0u0NRjayd3h1-O-tptbTonJx63yV38zjl5u797XT5mq-eHp-XtKjMFY31WcQ-KO1Xma-t9rkpw3jIuESTyEtCCAaOqApnEtTSKF15ZYQqbV5VT3BRzAvu7JoaUovO6i3WD8Vsz0BMYPVHQEwW9BzNWrveVOnR6E4bYjg_-F7_6I77tdF5qroGLHHLdWV_8AGuAcm4</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Idrees, M</creator><creator>Bacha, B A</creator><creator>Javed, M</creator><creator>Ullah, S A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Precise position measurement of an atom using superposition of two standing wave fields</title><author>Idrees, M ; Bacha, B A ; Javed, M ; Ullah, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-94f084e872bdff2870efd146a06a470ad0c0c893a16ab6c843f8d5c3d299e84c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atom localization</topic><topic>quantum coherence</topic><topic>three level atom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Idrees, M</creatorcontrib><creatorcontrib>Bacha, B A</creatorcontrib><creatorcontrib>Javed, M</creatorcontrib><creatorcontrib>Ullah, S A</creatorcontrib><collection>CrossRef</collection><jtitle>Laser physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Idrees, M</au><au>Bacha, B A</au><au>Javed, M</au><au>Ullah, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise position measurement of an atom using superposition of two standing wave fields</atitle><jtitle>Laser physics</jtitle><stitle>LP</stitle><addtitle>Laser Phys</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>27</volume><issue>4</issue><spage>45202</spage><pages>45202-</pages><issn>1054-660X</issn><eissn>1555-6611</eissn><coden>LAPHEJ</coden><abstract>We present a scheme that provides a strong basis for precise localization of atoms, using superposition of two standing wave fields in a three level Λ-type gain assisted model. We show how atomic interference and diffraction occur at a particular node or antinode region of the standing wave fields. Two, three, four and even single localized peaks of atoms are observed in both full-wavelength and sub-half-wavelength domains, with 100 percent localization probability in a single peak. Dark lines appearing in the node region of the standing wave fields show strong evidence for atomic destructive interference. The proposed scheme allows for efficient localization of an atom to a particular point.</abstract><pub>IOP Publishing</pub><doi>10.1088/1555-6611/aa5680</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-660X
ispartof Laser physics, 2017-04, Vol.27 (4), p.45202
issn 1054-660X
1555-6611
language eng
recordid cdi_crossref_primary_10_1088_1555_6611_aa5680
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atom localization
quantum coherence
three level atom
title Precise position measurement of an atom using superposition of two standing wave fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20position%20measurement%20of%20an%20atom%20using%20superposition%20of%20two%20standing%20wave%20fields&rft.jtitle=Laser%20physics&rft.au=Idrees,%20M&rft.date=2017-04-01&rft.volume=27&rft.issue=4&rft.spage=45202&rft.pages=45202-&rft.issn=1054-660X&rft.eissn=1555-6611&rft.coden=LAPHEJ&rft_id=info:doi/10.1088/1555-6611/aa5680&rft_dat=%3Ciop_cross%3Elpaa5680%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true