Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs

Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2024-12, Vol.136 (12), p.125001
Hauptverfasser: Zhou, Ming, Zhang, Yong, Li, Jian, Lv, Guanru, Zhou, Zengxiang, Liu, Zhigang, Wang, Jianping, Wang, Yingfu, Zhou, Jiahao, Bai, Zhongrui, Li, Ganyu, Wang, Mengxin, Wang, Shuqing, Hu, Hongzhuan, Zhai, Chao, Chu, Jiaru, Dong, Yiqiao, Yuan, Hailong, Zhao, Yongheng, Chu, Yaoquan, Zhang, Haotong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 125001
container_title Publications of the Astronomical Society of the Pacific
container_volume 136
creator Zhou, Ming
Zhang, Yong
Li, Jian
Lv, Guanru
Zhou, Zengxiang
Liu, Zhigang
Wang, Jianping
Wang, Yingfu
Zhou, Jiahao
Bai, Zhongrui
Li, Ganyu
Wang, Mengxin
Wang, Shuqing
Hu, Hongzhuan
Zhai, Chao
Chu, Jiaru
Dong, Yiqiao
Yuan, Hailong
Zhao, Yongheng
Chu, Yaoquan
Zhang, Haotong
description Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.
doi_str_mv 10.1088/1538-3873/ad95bd
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1538_3873_ad95bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>paspad95bd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-469e4cd023bfabda869566a0f973686ddc909da98b92f5428a6e787a7a38def43</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jzmLcUnTpslxbE6FiTL1HF6bZGZ0S0m6g_-9LRVPCg_ez--Xxweha0bvGJVyxgouCZcln4FRRWVO0OR3dIomlNKciEzSc3SR0o5SxiSjE-Q2FhrS-b3Fi9A0PvlwwEvb2bobquDw8ggN3oQOOn_Y4nnc49eQ_LC1EbsQ8fOx6TwJ1a7X4JWvbCTOGvzW9n0M2wjtZ7pEZw6aZK9-8hR9rO7fF49k_fLwtJivSc2U7EgulM1rQzNeOagMSKEKIYA6VXIhhTG1osqAkpXKXJFnEoQtZQklcGmsy_kU0dG3jiGlaJ1uo99D_NKM6oGTHqDoAYoeOfWSm1HiQ6t34RgP_YO6hdRqxoVmWR9Fz0u3xvXHt38c_-v9Df3keWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhou, Ming ; Zhang, Yong ; Li, Jian ; Lv, Guanru ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Wang, Yingfu ; Zhou, Jiahao ; Bai, Zhongrui ; Li, Ganyu ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creator><creatorcontrib>Zhou, Ming ; Zhang, Yong ; Li, Jian ; Lv, Guanru ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Wang, Yingfu ; Zhou, Jiahao ; Bai, Zhongrui ; Li, Ganyu ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creatorcontrib><description>Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/ad95bd</identifier><language>eng</language><publisher>The Astronomical Society of the Pacific</publisher><subject>Astronomical instrumentation ; Astronomical methods ; Astronomical techniques</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2024-12, Vol.136 (12), p.125001</ispartof><rights>2024. The Astronomical Society of the Pacific. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-469e4cd023bfabda869566a0f973686ddc909da98b92f5428a6e787a7a38def43</cites><orcidid>0000-0002-6312-4444 ; 0000-0002-4554-5579 ; 0000-0002-6617-5300 ; 0000-0003-1487-0093 ; 0009-0005-7783-5334 ; 0000-0002-3050-5822 ; 0009-0007-3788-2675 ; 0009-0009-6931-2276 ; 0000-0001-5298-2833 ; 0000-0003-3884-5693 ; 0009-0009-0171-1553 ; 0000-0003-2179-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1538-3873/ad95bd/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Wang, Yingfu</creatorcontrib><creatorcontrib>Zhou, Jiahao</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Li, Ganyu</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><title>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>PASP</addtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><description>Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.</description><subject>Astronomical instrumentation</subject><subject>Astronomical methods</subject><subject>Astronomical techniques</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jzmLcUnTpslxbE6FiTL1HF6bZGZ0S0m6g_-9LRVPCg_ez--Xxweha0bvGJVyxgouCZcln4FRRWVO0OR3dIomlNKciEzSc3SR0o5SxiSjE-Q2FhrS-b3Fi9A0PvlwwEvb2bobquDw8ggN3oQOOn_Y4nnc49eQ_LC1EbsQ8fOx6TwJ1a7X4JWvbCTOGvzW9n0M2wjtZ7pEZw6aZK9-8hR9rO7fF49k_fLwtJivSc2U7EgulM1rQzNeOagMSKEKIYA6VXIhhTG1osqAkpXKXJFnEoQtZQklcGmsy_kU0dG3jiGlaJ1uo99D_NKM6oGTHqDoAYoeOfWSm1HiQ6t34RgP_YO6hdRqxoVmWR9Fz0u3xvXHt38c_-v9Df3keWU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhou, Ming</creator><creator>Zhang, Yong</creator><creator>Li, Jian</creator><creator>Lv, Guanru</creator><creator>Zhou, Zengxiang</creator><creator>Liu, Zhigang</creator><creator>Wang, Jianping</creator><creator>Wang, Yingfu</creator><creator>Zhou, Jiahao</creator><creator>Bai, Zhongrui</creator><creator>Li, Ganyu</creator><creator>Wang, Mengxin</creator><creator>Wang, Shuqing</creator><creator>Hu, Hongzhuan</creator><creator>Zhai, Chao</creator><creator>Chu, Jiaru</creator><creator>Dong, Yiqiao</creator><creator>Yuan, Hailong</creator><creator>Zhao, Yongheng</creator><creator>Chu, Yaoquan</creator><creator>Zhang, Haotong</creator><general>The Astronomical Society of the Pacific</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6312-4444</orcidid><orcidid>https://orcid.org/0000-0002-4554-5579</orcidid><orcidid>https://orcid.org/0000-0002-6617-5300</orcidid><orcidid>https://orcid.org/0000-0003-1487-0093</orcidid><orcidid>https://orcid.org/0009-0005-7783-5334</orcidid><orcidid>https://orcid.org/0000-0002-3050-5822</orcidid><orcidid>https://orcid.org/0009-0007-3788-2675</orcidid><orcidid>https://orcid.org/0009-0009-6931-2276</orcidid><orcidid>https://orcid.org/0000-0001-5298-2833</orcidid><orcidid>https://orcid.org/0000-0003-3884-5693</orcidid><orcidid>https://orcid.org/0009-0009-0171-1553</orcidid><orcidid>https://orcid.org/0000-0003-2179-3698</orcidid></search><sort><creationdate>20241201</creationdate><title>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</title><author>Zhou, Ming ; Zhang, Yong ; Li, Jian ; Lv, Guanru ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Wang, Yingfu ; Zhou, Jiahao ; Bai, Zhongrui ; Li, Ganyu ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-469e4cd023bfabda869566a0f973686ddc909da98b92f5428a6e787a7a38def43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomical instrumentation</topic><topic>Astronomical methods</topic><topic>Astronomical techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Wang, Yingfu</creatorcontrib><creatorcontrib>Zhou, Jiahao</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Li, Ganyu</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming</au><au>Zhang, Yong</au><au>Li, Jian</au><au>Lv, Guanru</au><au>Zhou, Zengxiang</au><au>Liu, Zhigang</au><au>Wang, Jianping</au><au>Wang, Yingfu</au><au>Zhou, Jiahao</au><au>Bai, Zhongrui</au><au>Li, Ganyu</au><au>Wang, Mengxin</au><au>Wang, Shuqing</au><au>Hu, Hongzhuan</au><au>Zhai, Chao</au><au>Chu, Jiaru</au><au>Dong, Yiqiao</au><au>Yuan, Hailong</au><au>Zhao, Yongheng</au><au>Chu, Yaoquan</au><au>Zhang, Haotong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><stitle>PASP</stitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>136</volume><issue>12</issue><spage>125001</spage><pages>125001-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.</abstract><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/ad95bd</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6312-4444</orcidid><orcidid>https://orcid.org/0000-0002-4554-5579</orcidid><orcidid>https://orcid.org/0000-0002-6617-5300</orcidid><orcidid>https://orcid.org/0000-0003-1487-0093</orcidid><orcidid>https://orcid.org/0009-0005-7783-5334</orcidid><orcidid>https://orcid.org/0000-0002-3050-5822</orcidid><orcidid>https://orcid.org/0009-0007-3788-2675</orcidid><orcidid>https://orcid.org/0009-0009-6931-2276</orcidid><orcidid>https://orcid.org/0000-0001-5298-2833</orcidid><orcidid>https://orcid.org/0000-0003-3884-5693</orcidid><orcidid>https://orcid.org/0009-0009-0171-1553</orcidid><orcidid>https://orcid.org/0000-0003-2179-3698</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2024-12, Vol.136 (12), p.125001
issn 0004-6280
1538-3873
language eng
recordid cdi_crossref_primary_10_1088_1538_3873_ad95bd
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Astronomical instrumentation
Astronomical methods
Astronomical techniques
title Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20Collision%20Detection%20of%20Dual%20Rotating%20Arm%20Positioner%20for%20Multi-object%20Fiber-fed%20Spectrographs&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Zhou,%20Ming&rft.date=2024-12-01&rft.volume=136&rft.issue=12&rft.spage=125001&rft.pages=125001-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/ad95bd&rft_dat=%3Ciop_cross%3Epaspad95bd%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true