Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs
Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjace...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of the Pacific 2024-12, Vol.136 (12), p.125001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125001 |
container_title | Publications of the Astronomical Society of the Pacific |
container_volume | 136 |
creator | Zhou, Ming Zhang, Yong Li, Jian Lv, Guanru Zhou, Zengxiang Liu, Zhigang Wang, Jianping Wang, Yingfu Zhou, Jiahao Bai, Zhongrui Li, Ganyu Wang, Mengxin Wang, Shuqing Hu, Hongzhuan Zhai, Chao Chu, Jiaru Dong, Yiqiao Yuan, Hailong Zhao, Yongheng Chu, Yaoquan Zhang, Haotong |
description | Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future. |
doi_str_mv | 10.1088/1538-3873/ad95bd |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1538_3873_ad95bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>paspad95bd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-469e4cd023bfabda869566a0f973686ddc909da98b92f5428a6e787a7a38def43</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jzmLcUnTpslxbE6FiTL1HF6bZGZ0S0m6g_-9LRVPCg_ez--Xxweha0bvGJVyxgouCZcln4FRRWVO0OR3dIomlNKciEzSc3SR0o5SxiSjE-Q2FhrS-b3Fi9A0PvlwwEvb2bobquDw8ggN3oQOOn_Y4nnc49eQ_LC1EbsQ8fOx6TwJ1a7X4JWvbCTOGvzW9n0M2wjtZ7pEZw6aZK9-8hR9rO7fF49k_fLwtJivSc2U7EgulM1rQzNeOagMSKEKIYA6VXIhhTG1osqAkpXKXJFnEoQtZQklcGmsy_kU0dG3jiGlaJ1uo99D_NKM6oGTHqDoAYoeOfWSm1HiQ6t34RgP_YO6hdRqxoVmWR9Fz0u3xvXHt38c_-v9Df3keWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhou, Ming ; Zhang, Yong ; Li, Jian ; Lv, Guanru ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Wang, Yingfu ; Zhou, Jiahao ; Bai, Zhongrui ; Li, Ganyu ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creator><creatorcontrib>Zhou, Ming ; Zhang, Yong ; Li, Jian ; Lv, Guanru ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Wang, Yingfu ; Zhou, Jiahao ; Bai, Zhongrui ; Li, Ganyu ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</creatorcontrib><description>Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/ad95bd</identifier><language>eng</language><publisher>The Astronomical Society of the Pacific</publisher><subject>Astronomical instrumentation ; Astronomical methods ; Astronomical techniques</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2024-12, Vol.136 (12), p.125001</ispartof><rights>2024. The Astronomical Society of the Pacific. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-469e4cd023bfabda869566a0f973686ddc909da98b92f5428a6e787a7a38def43</cites><orcidid>0000-0002-6312-4444 ; 0000-0002-4554-5579 ; 0000-0002-6617-5300 ; 0000-0003-1487-0093 ; 0009-0005-7783-5334 ; 0000-0002-3050-5822 ; 0009-0007-3788-2675 ; 0009-0009-6931-2276 ; 0000-0001-5298-2833 ; 0000-0003-3884-5693 ; 0009-0009-0171-1553 ; 0000-0003-2179-3698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1538-3873/ad95bd/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Wang, Yingfu</creatorcontrib><creatorcontrib>Zhou, Jiahao</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Li, Ganyu</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><title>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>PASP</addtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><description>Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.</description><subject>Astronomical instrumentation</subject><subject>Astronomical methods</subject><subject>Astronomical techniques</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jzmLcUnTpslxbE6FiTL1HF6bZGZ0S0m6g_-9LRVPCg_ez--Xxweha0bvGJVyxgouCZcln4FRRWVO0OR3dIomlNKciEzSc3SR0o5SxiSjE-Q2FhrS-b3Fi9A0PvlwwEvb2bobquDw8ggN3oQOOn_Y4nnc49eQ_LC1EbsQ8fOx6TwJ1a7X4JWvbCTOGvzW9n0M2wjtZ7pEZw6aZK9-8hR9rO7fF49k_fLwtJivSc2U7EgulM1rQzNeOagMSKEKIYA6VXIhhTG1osqAkpXKXJFnEoQtZQklcGmsy_kU0dG3jiGlaJ1uo99D_NKM6oGTHqDoAYoeOfWSm1HiQ6t34RgP_YO6hdRqxoVmWR9Fz0u3xvXHt38c_-v9Df3keWU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhou, Ming</creator><creator>Zhang, Yong</creator><creator>Li, Jian</creator><creator>Lv, Guanru</creator><creator>Zhou, Zengxiang</creator><creator>Liu, Zhigang</creator><creator>Wang, Jianping</creator><creator>Wang, Yingfu</creator><creator>Zhou, Jiahao</creator><creator>Bai, Zhongrui</creator><creator>Li, Ganyu</creator><creator>Wang, Mengxin</creator><creator>Wang, Shuqing</creator><creator>Hu, Hongzhuan</creator><creator>Zhai, Chao</creator><creator>Chu, Jiaru</creator><creator>Dong, Yiqiao</creator><creator>Yuan, Hailong</creator><creator>Zhao, Yongheng</creator><creator>Chu, Yaoquan</creator><creator>Zhang, Haotong</creator><general>The Astronomical Society of the Pacific</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6312-4444</orcidid><orcidid>https://orcid.org/0000-0002-4554-5579</orcidid><orcidid>https://orcid.org/0000-0002-6617-5300</orcidid><orcidid>https://orcid.org/0000-0003-1487-0093</orcidid><orcidid>https://orcid.org/0009-0005-7783-5334</orcidid><orcidid>https://orcid.org/0000-0002-3050-5822</orcidid><orcidid>https://orcid.org/0009-0007-3788-2675</orcidid><orcidid>https://orcid.org/0009-0009-6931-2276</orcidid><orcidid>https://orcid.org/0000-0001-5298-2833</orcidid><orcidid>https://orcid.org/0000-0003-3884-5693</orcidid><orcidid>https://orcid.org/0009-0009-0171-1553</orcidid><orcidid>https://orcid.org/0000-0003-2179-3698</orcidid></search><sort><creationdate>20241201</creationdate><title>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</title><author>Zhou, Ming ; Zhang, Yong ; Li, Jian ; Lv, Guanru ; Zhou, Zengxiang ; Liu, Zhigang ; Wang, Jianping ; Wang, Yingfu ; Zhou, Jiahao ; Bai, Zhongrui ; Li, Ganyu ; Wang, Mengxin ; Wang, Shuqing ; Hu, Hongzhuan ; Zhai, Chao ; Chu, Jiaru ; Dong, Yiqiao ; Yuan, Hailong ; Zhao, Yongheng ; Chu, Yaoquan ; Zhang, Haotong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-469e4cd023bfabda869566a0f973686ddc909da98b92f5428a6e787a7a38def43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomical instrumentation</topic><topic>Astronomical methods</topic><topic>Astronomical techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Lv, Guanru</creatorcontrib><creatorcontrib>Zhou, Zengxiang</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Wang, Jianping</creatorcontrib><creatorcontrib>Wang, Yingfu</creatorcontrib><creatorcontrib>Zhou, Jiahao</creatorcontrib><creatorcontrib>Bai, Zhongrui</creatorcontrib><creatorcontrib>Li, Ganyu</creatorcontrib><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wang, Shuqing</creatorcontrib><creatorcontrib>Hu, Hongzhuan</creatorcontrib><creatorcontrib>Zhai, Chao</creatorcontrib><creatorcontrib>Chu, Jiaru</creatorcontrib><creatorcontrib>Dong, Yiqiao</creatorcontrib><creatorcontrib>Yuan, Hailong</creatorcontrib><creatorcontrib>Zhao, Yongheng</creatorcontrib><creatorcontrib>Chu, Yaoquan</creatorcontrib><creatorcontrib>Zhang, Haotong</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ming</au><au>Zhang, Yong</au><au>Li, Jian</au><au>Lv, Guanru</au><au>Zhou, Zengxiang</au><au>Liu, Zhigang</au><au>Wang, Jianping</au><au>Wang, Yingfu</au><au>Zhou, Jiahao</au><au>Bai, Zhongrui</au><au>Li, Ganyu</au><au>Wang, Mengxin</au><au>Wang, Shuqing</au><au>Hu, Hongzhuan</au><au>Zhai, Chao</au><au>Chu, Jiaru</au><au>Dong, Yiqiao</au><au>Yuan, Hailong</au><au>Zhao, Yongheng</au><au>Chu, Yaoquan</au><au>Zhang, Haotong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><stitle>PASP</stitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>136</volume><issue>12</issue><spage>125001</spage><pages>125001-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>Multi-object fiber spectroscopic survey is pivotal to astronomical research. Most spectroscopic telescopes are equipped with thousands of robotic fiber positioners designed to observe multiple celestial objects simultaneously. Despite this advancement, the risk of potential collisions between adjacent positioners, due to overlapping work zones, poses a significant challenge that could limit the telescope’s observing efficiency. In this study, we present a method based on deep learning to detect the collision of dual rotating arm positioner using the front-illuminated image from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). We employ a deep learning detection model based on the YOLOv5 object detection algorithm to identify and locate the collision zones. Furthermore, the BiSeNet image segmentation algorithm is applied to determine the positioners within these collision zones, ultimately identifying the collided positioners. Experimental results reveal a precision and recall of 90.20% and 85.44% respectively for our method. To verify our results further, we conducted a correlation analysis on the spectral flux in LAMOST survey data via direct measurement. The collision types of the LAMOST positioners are also analyzed, which provides guidance for optimizing the anti-collision algorithm in the future.</abstract><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/ad95bd</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6312-4444</orcidid><orcidid>https://orcid.org/0000-0002-4554-5579</orcidid><orcidid>https://orcid.org/0000-0002-6617-5300</orcidid><orcidid>https://orcid.org/0000-0003-1487-0093</orcidid><orcidid>https://orcid.org/0009-0005-7783-5334</orcidid><orcidid>https://orcid.org/0000-0002-3050-5822</orcidid><orcidid>https://orcid.org/0009-0007-3788-2675</orcidid><orcidid>https://orcid.org/0009-0009-6931-2276</orcidid><orcidid>https://orcid.org/0000-0001-5298-2833</orcidid><orcidid>https://orcid.org/0000-0003-3884-5693</orcidid><orcidid>https://orcid.org/0009-0009-0171-1553</orcidid><orcidid>https://orcid.org/0000-0003-2179-3698</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publications of the Astronomical Society of the Pacific, 2024-12, Vol.136 (12), p.125001 |
issn | 0004-6280 1538-3873 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1538_3873_ad95bd |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Astronomical instrumentation Astronomical methods Astronomical techniques |
title | Real-time Collision Detection of Dual Rotating Arm Positioner for Multi-object Fiber-fed Spectrographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20Collision%20Detection%20of%20Dual%20Rotating%20Arm%20Positioner%20for%20Multi-object%20Fiber-fed%20Spectrographs&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Zhou,%20Ming&rft.date=2024-12-01&rft.volume=136&rft.issue=12&rft.spage=125001&rft.pages=125001-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/ad95bd&rft_dat=%3Ciop_cross%3Epaspad95bd%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |