Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles

Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical biology 2017-06, Vol.14 (4), p.045008-045008
Hauptverfasser: Stefferson, Michael W, Norris, Samantha L, Vernerey, Franck J, Betterton, Meredith D, Hough, Loren E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 045008
container_issue 4
container_start_page 045008
container_title Physical biology
container_volume 14
creator Stefferson, Michael W
Norris, Samantha L
Vernerey, Franck J
Betterton, Meredith D
Hough, Loren E
description Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.
doi_str_mv 10.1088/1478-3975/aa7869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1478_3975_aa7869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908429613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</originalsourceid><addsrcrecordid>eNp1kcFPHCEYxUnTRq317slw7MGtMMwM0EOTxtjWxMSLPRMGPlp0BkZgbPbSv13WtRs99AIE3vvx5T2Ejin5RIkQZ7TlYsUk78605qKXb9DB7urti_M-ep_zLSGNbAjfQ_uN6CQXrThAfy-cA1Myjg7n6Ar2oUDSpvgYMtbB4iEudZ3i4Edf1jgGbL1zS66CKsYmxT8WLIbw4FMME4SSP2NdDRbGJ2rx5m79hMqjn2dIFTLkos0I-QN65_SY4eh5P0Q_v13cnP9YXV1_vzz_erUyTNKyEsCkAT5YIFwS2hjBwDCw0jBBByJF3xFrRNu1hOvOCM6JI13rSK9bph1nh-jLljsvwwTW1CmTHtWc_KTTWkXt1euX4H-rX_FBdTXWppcV8PEZkOL9ArmoyWcD46gDxCUrKoloG9lTVqVkK63R5JzA7b6hRG1qU5te1KYXta2tWk5ejrcz_OupCk63Ah9ndRuXFGpa_-c9AqETpIE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908429613</pqid></control><display><type>article</type><title>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Stefferson, Michael W ; Norris, Samantha L ; Vernerey, Franck J ; Betterton, Meredith D ; Hough, Loren E</creator><creatorcontrib>Stefferson, Michael W ; Norris, Samantha L ; Vernerey, Franck J ; Betterton, Meredith D ; Hough, Loren E</creatorcontrib><description>Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/aa7869</identifier><identifier>PMID: 28597848</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>anomalous diffusion ; binding ; crowding ; diffusion</subject><ispartof>Physical biology, 2017-06, Vol.14 (4), p.045008-045008</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</citedby><cites>FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</cites><orcidid>0000-0002-1104-0126 ; 0000-0002-5430-5518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1478-3975/aa7869/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28597848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefferson, Michael W</creatorcontrib><creatorcontrib>Norris, Samantha L</creatorcontrib><creatorcontrib>Vernerey, Franck J</creatorcontrib><creatorcontrib>Betterton, Meredith D</creatorcontrib><creatorcontrib>Hough, Loren E</creatorcontrib><title>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</title><title>Physical biology</title><addtitle>PhysBio</addtitle><addtitle>Phys. Biol</addtitle><description>Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.</description><subject>anomalous diffusion</subject><subject>binding</subject><subject>crowding</subject><subject>diffusion</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kcFPHCEYxUnTRq317slw7MGtMMwM0EOTxtjWxMSLPRMGPlp0BkZgbPbSv13WtRs99AIE3vvx5T2Ejin5RIkQZ7TlYsUk78605qKXb9DB7urti_M-ep_zLSGNbAjfQ_uN6CQXrThAfy-cA1Myjg7n6Ar2oUDSpvgYMtbB4iEudZ3i4Edf1jgGbL1zS66CKsYmxT8WLIbw4FMME4SSP2NdDRbGJ2rx5m79hMqjn2dIFTLkos0I-QN65_SY4eh5P0Q_v13cnP9YXV1_vzz_erUyTNKyEsCkAT5YIFwS2hjBwDCw0jBBByJF3xFrRNu1hOvOCM6JI13rSK9bph1nh-jLljsvwwTW1CmTHtWc_KTTWkXt1euX4H-rX_FBdTXWppcV8PEZkOL9ArmoyWcD46gDxCUrKoloG9lTVqVkK63R5JzA7b6hRG1qU5te1KYXta2tWk5ejrcz_OupCk63Ah9ndRuXFGpa_-c9AqETpIE</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Stefferson, Michael W</creator><creator>Norris, Samantha L</creator><creator>Vernerey, Franck J</creator><creator>Betterton, Meredith D</creator><creator>Hough, Loren E</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1104-0126</orcidid><orcidid>https://orcid.org/0000-0002-5430-5518</orcidid></search><sort><creationdate>20170629</creationdate><title>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</title><author>Stefferson, Michael W ; Norris, Samantha L ; Vernerey, Franck J ; Betterton, Meredith D ; Hough, Loren E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anomalous diffusion</topic><topic>binding</topic><topic>crowding</topic><topic>diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefferson, Michael W</creatorcontrib><creatorcontrib>Norris, Samantha L</creatorcontrib><creatorcontrib>Vernerey, Franck J</creatorcontrib><creatorcontrib>Betterton, Meredith D</creatorcontrib><creatorcontrib>Hough, Loren E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefferson, Michael W</au><au>Norris, Samantha L</au><au>Vernerey, Franck J</au><au>Betterton, Meredith D</au><au>Hough, Loren E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</atitle><jtitle>Physical biology</jtitle><stitle>PhysBio</stitle><addtitle>Phys. Biol</addtitle><date>2017-06-29</date><risdate>2017</risdate><volume>14</volume><issue>4</issue><spage>045008</spage><epage>045008</epage><pages>045008-045008</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28597848</pmid><doi>10.1088/1478-3975/aa7869</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1104-0126</orcidid><orcidid>https://orcid.org/0000-0002-5430-5518</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1478-3975
ispartof Physical biology, 2017-06, Vol.14 (4), p.045008-045008
issn 1478-3975
1478-3967
1478-3975
language eng
recordid cdi_crossref_primary_10_1088_1478_3975_aa7869
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects anomalous diffusion
binding
crowding
diffusion
title Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20soft%20interactions%20and%20bound%20mobility%20on%20diffusion%20in%20crowded%20environments:%20a%20model%20of%20sticky%20and%20slippery%20obstacles&rft.jtitle=Physical%20biology&rft.au=Stefferson,%20Michael%20W&rft.date=2017-06-29&rft.volume=14&rft.issue=4&rft.spage=045008&rft.epage=045008&rft.pages=045008-045008&rft.issn=1478-3975&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/aa7869&rft_dat=%3Cproquest_cross%3E1908429613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908429613&rft_id=info:pmid/28597848&rfr_iscdi=true