Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles
Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typical...
Gespeichert in:
Veröffentlicht in: | Physical biology 2017-06, Vol.14 (4), p.045008-045008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 045008 |
---|---|
container_issue | 4 |
container_start_page | 045008 |
container_title | Physical biology |
container_volume | 14 |
creator | Stefferson, Michael W Norris, Samantha L Vernerey, Franck J Betterton, Meredith D Hough, Loren E |
description | Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells. |
doi_str_mv | 10.1088/1478-3975/aa7869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1478_3975_aa7869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908429613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</originalsourceid><addsrcrecordid>eNp1kcFPHCEYxUnTRq317slw7MGtMMwM0EOTxtjWxMSLPRMGPlp0BkZgbPbSv13WtRs99AIE3vvx5T2Ejin5RIkQZ7TlYsUk78605qKXb9DB7urti_M-ep_zLSGNbAjfQ_uN6CQXrThAfy-cA1Myjg7n6Ar2oUDSpvgYMtbB4iEudZ3i4Edf1jgGbL1zS66CKsYmxT8WLIbw4FMME4SSP2NdDRbGJ2rx5m79hMqjn2dIFTLkos0I-QN65_SY4eh5P0Q_v13cnP9YXV1_vzz_erUyTNKyEsCkAT5YIFwS2hjBwDCw0jBBByJF3xFrRNu1hOvOCM6JI13rSK9bph1nh-jLljsvwwTW1CmTHtWc_KTTWkXt1euX4H-rX_FBdTXWppcV8PEZkOL9ArmoyWcD46gDxCUrKoloG9lTVqVkK63R5JzA7b6hRG1qU5te1KYXta2tWk5ejrcz_OupCk63Ah9ndRuXFGpa_-c9AqETpIE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908429613</pqid></control><display><type>article</type><title>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Stefferson, Michael W ; Norris, Samantha L ; Vernerey, Franck J ; Betterton, Meredith D ; Hough, Loren E</creator><creatorcontrib>Stefferson, Michael W ; Norris, Samantha L ; Vernerey, Franck J ; Betterton, Meredith D ; Hough, Loren E</creatorcontrib><description>Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/aa7869</identifier><identifier>PMID: 28597848</identifier><identifier>CODEN: PBHIAT</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>anomalous diffusion ; binding ; crowding ; diffusion</subject><ispartof>Physical biology, 2017-06, Vol.14 (4), p.045008-045008</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</citedby><cites>FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</cites><orcidid>0000-0002-1104-0126 ; 0000-0002-5430-5518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1478-3975/aa7869/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28597848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stefferson, Michael W</creatorcontrib><creatorcontrib>Norris, Samantha L</creatorcontrib><creatorcontrib>Vernerey, Franck J</creatorcontrib><creatorcontrib>Betterton, Meredith D</creatorcontrib><creatorcontrib>Hough, Loren E</creatorcontrib><title>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</title><title>Physical biology</title><addtitle>PhysBio</addtitle><addtitle>Phys. Biol</addtitle><description>Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.</description><subject>anomalous diffusion</subject><subject>binding</subject><subject>crowding</subject><subject>diffusion</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kcFPHCEYxUnTRq317slw7MGtMMwM0EOTxtjWxMSLPRMGPlp0BkZgbPbSv13WtRs99AIE3vvx5T2Ejin5RIkQZ7TlYsUk78605qKXb9DB7urti_M-ep_zLSGNbAjfQ_uN6CQXrThAfy-cA1Myjg7n6Ar2oUDSpvgYMtbB4iEudZ3i4Edf1jgGbL1zS66CKsYmxT8WLIbw4FMME4SSP2NdDRbGJ2rx5m79hMqjn2dIFTLkos0I-QN65_SY4eh5P0Q_v13cnP9YXV1_vzz_erUyTNKyEsCkAT5YIFwS2hjBwDCw0jBBByJF3xFrRNu1hOvOCM6JI13rSK9bph1nh-jLljsvwwTW1CmTHtWc_KTTWkXt1euX4H-rX_FBdTXWppcV8PEZkOL9ArmoyWcD46gDxCUrKoloG9lTVqVkK63R5JzA7b6hRG1qU5te1KYXta2tWk5ejrcz_OupCk63Ah9ndRuXFGpa_-c9AqETpIE</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Stefferson, Michael W</creator><creator>Norris, Samantha L</creator><creator>Vernerey, Franck J</creator><creator>Betterton, Meredith D</creator><creator>Hough, Loren E</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1104-0126</orcidid><orcidid>https://orcid.org/0000-0002-5430-5518</orcidid></search><sort><creationdate>20170629</creationdate><title>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</title><author>Stefferson, Michael W ; Norris, Samantha L ; Vernerey, Franck J ; Betterton, Meredith D ; Hough, Loren E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8e39ce7bde079012c83ec3ed9c381b098650dc845407a5c8770f054f06a43af73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>anomalous diffusion</topic><topic>binding</topic><topic>crowding</topic><topic>diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stefferson, Michael W</creatorcontrib><creatorcontrib>Norris, Samantha L</creatorcontrib><creatorcontrib>Vernerey, Franck J</creatorcontrib><creatorcontrib>Betterton, Meredith D</creatorcontrib><creatorcontrib>Hough, Loren E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stefferson, Michael W</au><au>Norris, Samantha L</au><au>Vernerey, Franck J</au><au>Betterton, Meredith D</au><au>Hough, Loren E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles</atitle><jtitle>Physical biology</jtitle><stitle>PhysBio</stitle><addtitle>Phys. Biol</addtitle><date>2017-06-29</date><risdate>2017</risdate><volume>14</volume><issue>4</issue><spage>045008</spage><epage>045008</epage><pages>045008-045008</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><coden>PBHIAT</coden><abstract>Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28597848</pmid><doi>10.1088/1478-3975/aa7869</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1104-0126</orcidid><orcidid>https://orcid.org/0000-0002-5430-5518</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-3975 |
ispartof | Physical biology, 2017-06, Vol.14 (4), p.045008-045008 |
issn | 1478-3975 1478-3967 1478-3975 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1478_3975_aa7869 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | anomalous diffusion binding crowding diffusion |
title | Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20soft%20interactions%20and%20bound%20mobility%20on%20diffusion%20in%20crowded%20environments:%20a%20model%20of%20sticky%20and%20slippery%20obstacles&rft.jtitle=Physical%20biology&rft.au=Stefferson,%20Michael%20W&rft.date=2017-06-29&rft.volume=14&rft.issue=4&rft.spage=045008&rft.epage=045008&rft.pages=045008-045008&rft.issn=1478-3975&rft.eissn=1478-3975&rft.coden=PBHIAT&rft_id=info:doi/10.1088/1478-3975/aa7869&rft_dat=%3Cproquest_cross%3E1908429613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908429613&rft_id=info:pmid/28597848&rfr_iscdi=true |