Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer

Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-11, Vol.99 (11), p.1159105
Hauptverfasser: Tu, Yufei, Zhang, Jiawen, Tian, Zhuang Zhuang, Du, Hailong, Zhao, Long, Jia, Minglei, Wang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1159105
container_title Physica scripta
container_volume 99
creator Tu, Yufei
Zhang, Jiawen
Tian, Zhuang Zhuang
Du, Hailong
Zhao, Long
Jia, Minglei
Wang, Bing
description Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.
doi_str_mv 10.1088/1402-4896/ad8787
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad8787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad8787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-1e1b2421a5e80ace266d3376d06b88fc13a41647483bab9a07e85a0f66f355933</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKt7l_kBjk0mmUxmKYNfUHChrsObTFJTOsmQpGC3_nKnVKwbVw8u91weB6FrSm4pkXJBOSkLLhuxgF7Wsj5Bs9_oFM0IYbSQDW_O0UVKa0JKUYpmhr6ehzHEDF4bHCweYOVNdhqnDxgNBu9SyDGMO-w87k02cXDe-RXO0cGng82R-NOdhqyJMRzXzOB08P1W5xBxG1_bCQw-bGBn4iU6s7BJ5urnztH7w_1b-1QsXx6f27tloalguaCGdiUvKVRGEtCmFKJnrBY9EZ2UVlMGnApec8k66BogtZEVECuEZVXVMDZH5LCrY0gpGqvG6AaIO0WJ2jtUe2FqL0wdHE7IzQFxYVTrsI1-evD_-jdaRHX9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tu, Yufei ; Zhang, Jiawen ; Tian, Zhuang Zhuang ; Du, Hailong ; Zhao, Long ; Jia, Minglei ; Wang, Bing</creator><creatorcontrib>Tu, Yufei ; Zhang, Jiawen ; Tian, Zhuang Zhuang ; Du, Hailong ; Zhao, Long ; Jia, Minglei ; Wang, Bing</creatorcontrib><description>Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad8787</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>high Curie temperature ferromagnetic semiconductor ; magnetic dipole-dipole interaction ; spin-orbit coupling interaction ; triaxial magnetic anisotropy</subject><ispartof>Physica scripta, 2024-11, Vol.99 (11), p.1159105</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-1e1b2421a5e80ace266d3376d06b88fc13a41647483bab9a07e85a0f66f355933</cites><orcidid>0000-0003-2537-5805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad8787/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Tu, Yufei</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Tian, Zhuang Zhuang</creatorcontrib><creatorcontrib>Du, Hailong</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Jia, Minglei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.</description><subject>high Curie temperature ferromagnetic semiconductor</subject><subject>magnetic dipole-dipole interaction</subject><subject>spin-orbit coupling interaction</subject><subject>triaxial magnetic anisotropy</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKt7l_kBjk0mmUxmKYNfUHChrsObTFJTOsmQpGC3_nKnVKwbVw8u91weB6FrSm4pkXJBOSkLLhuxgF7Wsj5Bs9_oFM0IYbSQDW_O0UVKa0JKUYpmhr6ehzHEDF4bHCweYOVNdhqnDxgNBu9SyDGMO-w87k02cXDe-RXO0cGng82R-NOdhqyJMRzXzOB08P1W5xBxG1_bCQw-bGBn4iU6s7BJ5urnztH7w_1b-1QsXx6f27tloalguaCGdiUvKVRGEtCmFKJnrBY9EZ2UVlMGnApec8k66BogtZEVECuEZVXVMDZH5LCrY0gpGqvG6AaIO0WJ2jtUe2FqL0wdHE7IzQFxYVTrsI1-evD_-jdaRHX9</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Tu, Yufei</creator><creator>Zhang, Jiawen</creator><creator>Tian, Zhuang Zhuang</creator><creator>Du, Hailong</creator><creator>Zhao, Long</creator><creator>Jia, Minglei</creator><creator>Wang, Bing</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2537-5805</orcidid></search><sort><creationdate>20241101</creationdate><title>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</title><author>Tu, Yufei ; Zhang, Jiawen ; Tian, Zhuang Zhuang ; Du, Hailong ; Zhao, Long ; Jia, Minglei ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-1e1b2421a5e80ace266d3376d06b88fc13a41647483bab9a07e85a0f66f355933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>high Curie temperature ferromagnetic semiconductor</topic><topic>magnetic dipole-dipole interaction</topic><topic>spin-orbit coupling interaction</topic><topic>triaxial magnetic anisotropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Yufei</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Tian, Zhuang Zhuang</creatorcontrib><creatorcontrib>Du, Hailong</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Jia, Minglei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Yufei</au><au>Zhang, Jiawen</au><au>Tian, Zhuang Zhuang</au><au>Du, Hailong</au><au>Zhao, Long</au><au>Jia, Minglei</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>99</volume><issue>11</issue><spage>1159105</spage><pages>1159105-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad8787</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2537-5805</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2024-11, Vol.99 (11), p.1159105
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ad8787
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects high Curie temperature ferromagnetic semiconductor
magnetic dipole-dipole interaction
spin-orbit coupling interaction
triaxial magnetic anisotropy
title Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20of%20magnetic%20shape%20anisotropy%20in%20determining%20triaxial%20magnetic%20anisotropy%20of%20ferromagnetic%20semiconductor%20CrSCl%20monolayer&rft.jtitle=Physica%20scripta&rft.au=Tu,%20Yufei&rft.date=2024-11-01&rft.volume=99&rft.issue=11&rft.spage=1159105&rft.pages=1159105-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad8787&rft_dat=%3Ciop_cross%3Epsad8787%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true