Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer
Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC)...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2024-11, Vol.99 (11), p.1159105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1159105 |
container_title | Physica scripta |
container_volume | 99 |
creator | Tu, Yufei Zhang, Jiawen Tian, Zhuang Zhuang Du, Hailong Zhao, Long Jia, Minglei Wang, Bing |
description | Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices. |
doi_str_mv | 10.1088/1402-4896/ad8787 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad8787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad8787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-1e1b2421a5e80ace266d3376d06b88fc13a41647483bab9a07e85a0f66f355933</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKt7l_kBjk0mmUxmKYNfUHChrsObTFJTOsmQpGC3_nKnVKwbVw8u91weB6FrSm4pkXJBOSkLLhuxgF7Wsj5Bs9_oFM0IYbSQDW_O0UVKa0JKUYpmhr6ehzHEDF4bHCweYOVNdhqnDxgNBu9SyDGMO-w87k02cXDe-RXO0cGng82R-NOdhqyJMRzXzOB08P1W5xBxG1_bCQw-bGBn4iU6s7BJ5urnztH7w_1b-1QsXx6f27tloalguaCGdiUvKVRGEtCmFKJnrBY9EZ2UVlMGnApec8k66BogtZEVECuEZVXVMDZH5LCrY0gpGqvG6AaIO0WJ2jtUe2FqL0wdHE7IzQFxYVTrsI1-evD_-jdaRHX9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Tu, Yufei ; Zhang, Jiawen ; Tian, Zhuang Zhuang ; Du, Hailong ; Zhao, Long ; Jia, Minglei ; Wang, Bing</creator><creatorcontrib>Tu, Yufei ; Zhang, Jiawen ; Tian, Zhuang Zhuang ; Du, Hailong ; Zhao, Long ; Jia, Minglei ; Wang, Bing</creatorcontrib><description>Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad8787</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>high Curie temperature ferromagnetic semiconductor ; magnetic dipole-dipole interaction ; spin-orbit coupling interaction ; triaxial magnetic anisotropy</subject><ispartof>Physica scripta, 2024-11, Vol.99 (11), p.1159105</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-1e1b2421a5e80ace266d3376d06b88fc13a41647483bab9a07e85a0f66f355933</cites><orcidid>0000-0003-2537-5805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad8787/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Tu, Yufei</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Tian, Zhuang Zhuang</creatorcontrib><creatorcontrib>Du, Hailong</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Jia, Minglei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><title>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.</description><subject>high Curie temperature ferromagnetic semiconductor</subject><subject>magnetic dipole-dipole interaction</subject><subject>spin-orbit coupling interaction</subject><subject>triaxial magnetic anisotropy</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKt7l_kBjk0mmUxmKYNfUHChrsObTFJTOsmQpGC3_nKnVKwbVw8u91weB6FrSm4pkXJBOSkLLhuxgF7Wsj5Bs9_oFM0IYbSQDW_O0UVKa0JKUYpmhr6ehzHEDF4bHCweYOVNdhqnDxgNBu9SyDGMO-w87k02cXDe-RXO0cGng82R-NOdhqyJMRzXzOB08P1W5xBxG1_bCQw-bGBn4iU6s7BJ5urnztH7w_1b-1QsXx6f27tloalguaCGdiUvKVRGEtCmFKJnrBY9EZ2UVlMGnApec8k66BogtZEVECuEZVXVMDZH5LCrY0gpGqvG6AaIO0WJ2jtUe2FqL0wdHE7IzQFxYVTrsI1-evD_-jdaRHX9</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Tu, Yufei</creator><creator>Zhang, Jiawen</creator><creator>Tian, Zhuang Zhuang</creator><creator>Du, Hailong</creator><creator>Zhao, Long</creator><creator>Jia, Minglei</creator><creator>Wang, Bing</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2537-5805</orcidid></search><sort><creationdate>20241101</creationdate><title>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</title><author>Tu, Yufei ; Zhang, Jiawen ; Tian, Zhuang Zhuang ; Du, Hailong ; Zhao, Long ; Jia, Minglei ; Wang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-1e1b2421a5e80ace266d3376d06b88fc13a41647483bab9a07e85a0f66f355933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>high Curie temperature ferromagnetic semiconductor</topic><topic>magnetic dipole-dipole interaction</topic><topic>spin-orbit coupling interaction</topic><topic>triaxial magnetic anisotropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Yufei</creatorcontrib><creatorcontrib>Zhang, Jiawen</creatorcontrib><creatorcontrib>Tian, Zhuang Zhuang</creatorcontrib><creatorcontrib>Du, Hailong</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Jia, Minglei</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Yufei</au><au>Zhang, Jiawen</au><au>Tian, Zhuang Zhuang</au><au>Du, Hailong</au><au>Zhao, Long</au><au>Jia, Minglei</au><au>Wang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>99</volume><issue>11</issue><spage>1159105</spage><pages>1159105-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Magnetic anisotropy (MA) is pivotal for stabilizing long-range magnetic order in two-dimensional (2D) systems against thermal fluctuations. Here, we conduct a comprehensive investigation of the electronic and magnetic properties of CrSCl monolayer using first-principles methods and Monte Carlo (MC) simulations. Our results reveal that CrSCl monolayer exhibit a direct band gap ferromagnetic semiconductor (FMS) with a high Curie temperature (T C , 143 K). Notably, we identify triaxial magnetic anisotropy in this monolayer, characterized by the easy magnetization axis along the y -axis, intermediate axis along the x -axis, and hard axis along the z -axis. This anisotropy arises from a combination of magnetocrystalline anisotropy and shape anisotropy, in which shape anisotropy dominating over weak magnetocrystalline anisotropy. Orbital projection analysis shows that the major contribution of magnetic anisotropy energy comes from the d orbital of Cr atom. These findings provide some insights into the strain response of MA and suggest that studies of other FM monolayers may uncover future contenders for strain-switchable and ultra-compact spintronics devices.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad8787</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2537-5805</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2024-11, Vol.99 (11), p.1159105 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ad8787 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | high Curie temperature ferromagnetic semiconductor magnetic dipole-dipole interaction spin-orbit coupling interaction triaxial magnetic anisotropy |
title | Importance of magnetic shape anisotropy in determining triaxial magnetic anisotropy of ferromagnetic semiconductor CrSCl monolayer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20of%20magnetic%20shape%20anisotropy%20in%20determining%20triaxial%20magnetic%20anisotropy%20of%20ferromagnetic%20semiconductor%20CrSCl%20monolayer&rft.jtitle=Physica%20scripta&rft.au=Tu,%20Yufei&rft.date=2024-11-01&rft.volume=99&rft.issue=11&rft.spage=1159105&rft.pages=1159105-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad8787&rft_dat=%3Ciop_cross%3Epsad8787%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |