An improved YOLOv8 model enhanced with detail and global features for underwater object detection

Underwater object detection is significant for the practical research of mastering existing marine biological resources. In response to the challenges posed by complex underwater environments such as water scattering and variations in object scales, researchers have developed YOLOv8 for object detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-09, Vol.99 (9), p.96008
Hauptverfasser: Zhai, Zheng-Li, Niu, Niu-Wang-Jie, Feng, Bao-Ming, Xu, Shi-Ya, Qu, Chun-Yu, Zong, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 96008
container_title Physica scripta
container_volume 99
creator Zhai, Zheng-Li
Niu, Niu-Wang-Jie
Feng, Bao-Ming
Xu, Shi-Ya
Qu, Chun-Yu
Zong, Chao
description Underwater object detection is significant for the practical research of mastering existing marine biological resources. In response to the challenges posed by complex underwater environments such as water scattering and variations in object scales, researchers have developed YOLOv8 for object detection, driven by the rising popularity and iteration of deep learning. Building upon this model, we propose an enhanced underwater object detection model named YOLOv8-DGF. Firstly, we replace the convolutional layers of Spatial Pyramid Pooling Fusion (SPPF) with Invertible Neural Networks to further augment the fusion capacity of detailed features, facilitating the preservation of pivotal information while mitigating the impact of noise. Additionally, we introduce a global attention mechanism into Convolution to Fully Connected (C2f), which weights the input features, thereby emphasizing or suppressing feature information from different locations. Through our ‘Detail to Global’ strategy, the model achieved mAP@0.5 scores of 87.7% and 84.8% on the RUOD and URPC2020 datasets, respectively, with improved processing speed. Extensive ablation experiments on the Pascal VOC dataset demonstrate that YOLOv8-DGF outperforms other methods, achieving the best overall performance.
doi_str_mv 10.1088/1402-4896/ad6e3b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad6e3b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad6e3b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-fd8c997acc9b27efb69127b179f1c017bee65c22b899e85bd53870883f9c4b6e3</originalsourceid><addsrcrecordid>eNp1kMtOwzAURC0EEqWwZ-kPINR2UsdeVhUvqVI3sGBl-XFNUyV25CSt-HsSBbFjNdLozujOQeiekkdKhFjRgrCsEJKvtOOQmwu0-LMu0YKQnGZCFvIa3XTdkRDGGZcLpDcBV02b4gkc_tzv9ieBm-igxhAOOtjRPVf9ATvodVVjHRz-qqPRNfag-yFBh31MeAgO0ln3kHA0R7D9FBiliuEWXXldd3D3q0v08fz0vn3NdvuXt-1ml1nK8z7zTlgpS22tNKwEb7ikrDS0lJ5aQksDwNeWMSOkBLE2bp2Lchyee2kLMy5eIjL32hS7LoFXbaoanb4VJWpCpCYeauKhZkRj5GGOVLFVxzikMD74__kPZNRpnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An improved YOLOv8 model enhanced with detail and global features for underwater object detection</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhai, Zheng-Li ; Niu, Niu-Wang-Jie ; Feng, Bao-Ming ; Xu, Shi-Ya ; Qu, Chun-Yu ; Zong, Chao</creator><creatorcontrib>Zhai, Zheng-Li ; Niu, Niu-Wang-Jie ; Feng, Bao-Ming ; Xu, Shi-Ya ; Qu, Chun-Yu ; Zong, Chao</creatorcontrib><description>Underwater object detection is significant for the practical research of mastering existing marine biological resources. In response to the challenges posed by complex underwater environments such as water scattering and variations in object scales, researchers have developed YOLOv8 for object detection, driven by the rising popularity and iteration of deep learning. Building upon this model, we propose an enhanced underwater object detection model named YOLOv8-DGF. Firstly, we replace the convolutional layers of Spatial Pyramid Pooling Fusion (SPPF) with Invertible Neural Networks to further augment the fusion capacity of detailed features, facilitating the preservation of pivotal information while mitigating the impact of noise. Additionally, we introduce a global attention mechanism into Convolution to Fully Connected (C2f), which weights the input features, thereby emphasizing or suppressing feature information from different locations. Through our ‘Detail to Global’ strategy, the model achieved mAP@0.5 scores of 87.7% and 84.8% on the RUOD and URPC2020 datasets, respectively, with improved processing speed. Extensive ablation experiments on the Pascal VOC dataset demonstrate that YOLOv8-DGF outperforms other methods, achieving the best overall performance.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad6e3b</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>global attention mechanism ; invertible neural networks ; underwater object detection ; YOLOv8</subject><ispartof>Physica scripta, 2024-09, Vol.99 (9), p.96008</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-fd8c997acc9b27efb69127b179f1c017bee65c22b899e85bd53870883f9c4b6e3</cites><orcidid>0009-0000-3704-1680 ; 0000-0001-5041-1447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad6e3b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Zhai, Zheng-Li</creatorcontrib><creatorcontrib>Niu, Niu-Wang-Jie</creatorcontrib><creatorcontrib>Feng, Bao-Ming</creatorcontrib><creatorcontrib>Xu, Shi-Ya</creatorcontrib><creatorcontrib>Qu, Chun-Yu</creatorcontrib><creatorcontrib>Zong, Chao</creatorcontrib><title>An improved YOLOv8 model enhanced with detail and global features for underwater object detection</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Underwater object detection is significant for the practical research of mastering existing marine biological resources. In response to the challenges posed by complex underwater environments such as water scattering and variations in object scales, researchers have developed YOLOv8 for object detection, driven by the rising popularity and iteration of deep learning. Building upon this model, we propose an enhanced underwater object detection model named YOLOv8-DGF. Firstly, we replace the convolutional layers of Spatial Pyramid Pooling Fusion (SPPF) with Invertible Neural Networks to further augment the fusion capacity of detailed features, facilitating the preservation of pivotal information while mitigating the impact of noise. Additionally, we introduce a global attention mechanism into Convolution to Fully Connected (C2f), which weights the input features, thereby emphasizing or suppressing feature information from different locations. Through our ‘Detail to Global’ strategy, the model achieved mAP@0.5 scores of 87.7% and 84.8% on the RUOD and URPC2020 datasets, respectively, with improved processing speed. Extensive ablation experiments on the Pascal VOC dataset demonstrate that YOLOv8-DGF outperforms other methods, achieving the best overall performance.</description><subject>global attention mechanism</subject><subject>invertible neural networks</subject><subject>underwater object detection</subject><subject>YOLOv8</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAURC0EEqWwZ-kPINR2UsdeVhUvqVI3sGBl-XFNUyV25CSt-HsSBbFjNdLozujOQeiekkdKhFjRgrCsEJKvtOOQmwu0-LMu0YKQnGZCFvIa3XTdkRDGGZcLpDcBV02b4gkc_tzv9ieBm-igxhAOOtjRPVf9ATvodVVjHRz-qqPRNfag-yFBh31MeAgO0ln3kHA0R7D9FBiliuEWXXldd3D3q0v08fz0vn3NdvuXt-1ml1nK8z7zTlgpS22tNKwEb7ikrDS0lJ5aQksDwNeWMSOkBLE2bp2Lchyee2kLMy5eIjL32hS7LoFXbaoanb4VJWpCpCYeauKhZkRj5GGOVLFVxzikMD74__kPZNRpnA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhai, Zheng-Li</creator><creator>Niu, Niu-Wang-Jie</creator><creator>Feng, Bao-Ming</creator><creator>Xu, Shi-Ya</creator><creator>Qu, Chun-Yu</creator><creator>Zong, Chao</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-3704-1680</orcidid><orcidid>https://orcid.org/0000-0001-5041-1447</orcidid></search><sort><creationdate>20240901</creationdate><title>An improved YOLOv8 model enhanced with detail and global features for underwater object detection</title><author>Zhai, Zheng-Li ; Niu, Niu-Wang-Jie ; Feng, Bao-Ming ; Xu, Shi-Ya ; Qu, Chun-Yu ; Zong, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-fd8c997acc9b27efb69127b179f1c017bee65c22b899e85bd53870883f9c4b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>global attention mechanism</topic><topic>invertible neural networks</topic><topic>underwater object detection</topic><topic>YOLOv8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Zheng-Li</creatorcontrib><creatorcontrib>Niu, Niu-Wang-Jie</creatorcontrib><creatorcontrib>Feng, Bao-Ming</creatorcontrib><creatorcontrib>Xu, Shi-Ya</creatorcontrib><creatorcontrib>Qu, Chun-Yu</creatorcontrib><creatorcontrib>Zong, Chao</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Zheng-Li</au><au>Niu, Niu-Wang-Jie</au><au>Feng, Bao-Ming</au><au>Xu, Shi-Ya</au><au>Qu, Chun-Yu</au><au>Zong, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved YOLOv8 model enhanced with detail and global features for underwater object detection</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>99</volume><issue>9</issue><spage>96008</spage><pages>96008-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Underwater object detection is significant for the practical research of mastering existing marine biological resources. In response to the challenges posed by complex underwater environments such as water scattering and variations in object scales, researchers have developed YOLOv8 for object detection, driven by the rising popularity and iteration of deep learning. Building upon this model, we propose an enhanced underwater object detection model named YOLOv8-DGF. Firstly, we replace the convolutional layers of Spatial Pyramid Pooling Fusion (SPPF) with Invertible Neural Networks to further augment the fusion capacity of detailed features, facilitating the preservation of pivotal information while mitigating the impact of noise. Additionally, we introduce a global attention mechanism into Convolution to Fully Connected (C2f), which weights the input features, thereby emphasizing or suppressing feature information from different locations. Through our ‘Detail to Global’ strategy, the model achieved mAP@0.5 scores of 87.7% and 84.8% on the RUOD and URPC2020 datasets, respectively, with improved processing speed. Extensive ablation experiments on the Pascal VOC dataset demonstrate that YOLOv8-DGF outperforms other methods, achieving the best overall performance.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad6e3b</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-3704-1680</orcidid><orcidid>https://orcid.org/0000-0001-5041-1447</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2024-09, Vol.99 (9), p.96008
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ad6e3b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects global attention mechanism
invertible neural networks
underwater object detection
YOLOv8
title An improved YOLOv8 model enhanced with detail and global features for underwater object detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20YOLOv8%20model%20enhanced%20with%20detail%20and%20global%20features%20for%20underwater%20object%20detection&rft.jtitle=Physica%20scripta&rft.au=Zhai,%20Zheng-Li&rft.date=2024-09-01&rft.volume=99&rft.issue=9&rft.spage=96008&rft.pages=96008-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad6e3b&rft_dat=%3Ciop_cross%3Epsad6e3b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true