Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules

This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-08, Vol.99 (8), p.85540
Hauptverfasser: Chauhan, Diksha, Sbeah, Zen, Sorathiya, Vishal, Adhikari, Rammani, Dwivedi, Ram Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85540
container_title Physica scripta
container_volume 99
creator Chauhan, Diksha
Sbeah, Zen
Sorathiya, Vishal
Adhikari, Rammani
Dwivedi, Ram Prakash
description This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.
doi_str_mv 10.1088/1402-4896/ad624b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad624b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad624b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-8c45032a90432caa46c18b10bdabf0cb5b4b0a927b54baa44fcd895a66db15d33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePebkybqTNI3JURY_FhYU1HPMR7ObpW1K0wr7721d8SQehoGZ5x2GB6FLAjcEhFgQBjRjQvKFdpwyc4Rmv6NjNAPISSYkk6foLKUdAOWUyxn6eA31UOk-xAanfnB7HD3WeBs222qPU9mk0IfPEq-ytNVt6fBLpVMdm2Bxo5s4AbHDfqxvttlMeRNiHavSDlWZztGJ11UqL376HL0_3L8tn7L18-NqebfOLJGsz4RlBeRUS2A5tVozbokwBIzTxoM1hWEGtKS3pmBmXDNvnZCF5twZUrg8nyM43LVdTKkrvWq7UOturwioyZCadKhJhzoYGiPXh0iIrdrFoWvGB__Dr_7A26SkVEKBKAoGqnU-_wKRL3ap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</title><source>Institute of Physics Journals</source><creator>Chauhan, Diksha ; Sbeah, Zen ; Sorathiya, Vishal ; Adhikari, Rammani ; Dwivedi, Ram Prakash</creator><creatorcontrib>Chauhan, Diksha ; Sbeah, Zen ; Sorathiya, Vishal ; Adhikari, Rammani ; Dwivedi, Ram Prakash</creatorcontrib><description>This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad624b</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>biomolecules ; biosensors ; cancerous cells ; plasmonics ; waveguides</subject><ispartof>Physica scripta, 2024-08, Vol.99 (8), p.85540</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-8c45032a90432caa46c18b10bdabf0cb5b4b0a927b54baa44fcd895a66db15d33</cites><orcidid>0000-0002-6121-5940 ; 0000-0002-8689-453X ; 0000-0003-4896-1196 ; 0000-0003-3778-0488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad624b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Chauhan, Diksha</creatorcontrib><creatorcontrib>Sbeah, Zen</creatorcontrib><creatorcontrib>Sorathiya, Vishal</creatorcontrib><creatorcontrib>Adhikari, Rammani</creatorcontrib><creatorcontrib>Dwivedi, Ram Prakash</creatorcontrib><title>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.</description><subject>biomolecules</subject><subject>biosensors</subject><subject>cancerous cells</subject><subject>plasmonics</subject><subject>waveguides</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePebkybqTNI3JURY_FhYU1HPMR7ObpW1K0wr7721d8SQehoGZ5x2GB6FLAjcEhFgQBjRjQvKFdpwyc4Rmv6NjNAPISSYkk6foLKUdAOWUyxn6eA31UOk-xAanfnB7HD3WeBs222qPU9mk0IfPEq-ytNVt6fBLpVMdm2Bxo5s4AbHDfqxvttlMeRNiHavSDlWZztGJ11UqL376HL0_3L8tn7L18-NqebfOLJGsz4RlBeRUS2A5tVozbokwBIzTxoM1hWEGtKS3pmBmXDNvnZCF5twZUrg8nyM43LVdTKkrvWq7UOturwioyZCadKhJhzoYGiPXh0iIrdrFoWvGB__Dr_7A26SkVEKBKAoGqnU-_wKRL3ap</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chauhan, Diksha</creator><creator>Sbeah, Zen</creator><creator>Sorathiya, Vishal</creator><creator>Adhikari, Rammani</creator><creator>Dwivedi, Ram Prakash</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6121-5940</orcidid><orcidid>https://orcid.org/0000-0002-8689-453X</orcidid><orcidid>https://orcid.org/0000-0003-4896-1196</orcidid><orcidid>https://orcid.org/0000-0003-3778-0488</orcidid></search><sort><creationdate>20240801</creationdate><title>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</title><author>Chauhan, Diksha ; Sbeah, Zen ; Sorathiya, Vishal ; Adhikari, Rammani ; Dwivedi, Ram Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-8c45032a90432caa46c18b10bdabf0cb5b4b0a927b54baa44fcd895a66db15d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomolecules</topic><topic>biosensors</topic><topic>cancerous cells</topic><topic>plasmonics</topic><topic>waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Diksha</creatorcontrib><creatorcontrib>Sbeah, Zen</creatorcontrib><creatorcontrib>Sorathiya, Vishal</creatorcontrib><creatorcontrib>Adhikari, Rammani</creatorcontrib><creatorcontrib>Dwivedi, Ram Prakash</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Diksha</au><au>Sbeah, Zen</au><au>Sorathiya, Vishal</au><au>Adhikari, Rammani</au><au>Dwivedi, Ram Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>99</volume><issue>8</issue><spage>85540</spage><pages>85540-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad624b</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6121-5940</orcidid><orcidid>https://orcid.org/0000-0002-8689-453X</orcidid><orcidid>https://orcid.org/0000-0003-4896-1196</orcidid><orcidid>https://orcid.org/0000-0003-3778-0488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2024-08, Vol.99 (8), p.85540
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ad624b
source Institute of Physics Journals
subjects biomolecules
biosensors
cancerous cells
plasmonics
waveguides
title Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20study%20of%20a%20highly%20sensitive%20I-shaped%20Plasmonic%20nanosensor%20for%20sensing%20of%20biomolecules&rft.jtitle=Physica%20scripta&rft.au=Chauhan,%20Diksha&rft.date=2024-08-01&rft.volume=99&rft.issue=8&rft.spage=85540&rft.pages=85540-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad624b&rft_dat=%3Ciop_cross%3Epsad624b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true