Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules
This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2024-08, Vol.99 (8), p.85540 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85540 |
container_title | Physica scripta |
container_volume | 99 |
creator | Chauhan, Diksha Sbeah, Zen Sorathiya, Vishal Adhikari, Rammani Dwivedi, Ram Prakash |
description | This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples. |
doi_str_mv | 10.1088/1402-4896/ad624b |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad624b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad624b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-8c45032a90432caa46c18b10bdabf0cb5b4b0a927b54baa44fcd895a66db15d33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7ePebkybqTNI3JURY_FhYU1HPMR7ObpW1K0wr7721d8SQehoGZ5x2GB6FLAjcEhFgQBjRjQvKFdpwyc4Rmv6NjNAPISSYkk6foLKUdAOWUyxn6eA31UOk-xAanfnB7HD3WeBs222qPU9mk0IfPEq-ytNVt6fBLpVMdm2Bxo5s4AbHDfqxvttlMeRNiHavSDlWZztGJ11UqL376HL0_3L8tn7L18-NqebfOLJGsz4RlBeRUS2A5tVozbokwBIzTxoM1hWEGtKS3pmBmXDNvnZCF5twZUrg8nyM43LVdTKkrvWq7UOturwioyZCadKhJhzoYGiPXh0iIrdrFoWvGB__Dr_7A26SkVEKBKAoGqnU-_wKRL3ap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</title><source>Institute of Physics Journals</source><creator>Chauhan, Diksha ; Sbeah, Zen ; Sorathiya, Vishal ; Adhikari, Rammani ; Dwivedi, Ram Prakash</creator><creatorcontrib>Chauhan, Diksha ; Sbeah, Zen ; Sorathiya, Vishal ; Adhikari, Rammani ; Dwivedi, Ram Prakash</creatorcontrib><description>This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad624b</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>biomolecules ; biosensors ; cancerous cells ; plasmonics ; waveguides</subject><ispartof>Physica scripta, 2024-08, Vol.99 (8), p.85540</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-8c45032a90432caa46c18b10bdabf0cb5b4b0a927b54baa44fcd895a66db15d33</cites><orcidid>0000-0002-6121-5940 ; 0000-0002-8689-453X ; 0000-0003-4896-1196 ; 0000-0003-3778-0488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad624b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Chauhan, Diksha</creatorcontrib><creatorcontrib>Sbeah, Zen</creatorcontrib><creatorcontrib>Sorathiya, Vishal</creatorcontrib><creatorcontrib>Adhikari, Rammani</creatorcontrib><creatorcontrib>Dwivedi, Ram Prakash</creatorcontrib><title>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.</description><subject>biomolecules</subject><subject>biosensors</subject><subject>cancerous cells</subject><subject>plasmonics</subject><subject>waveguides</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7ePebkybqTNI3JURY_FhYU1HPMR7ObpW1K0wr7721d8SQehoGZ5x2GB6FLAjcEhFgQBjRjQvKFdpwyc4Rmv6NjNAPISSYkk6foLKUdAOWUyxn6eA31UOk-xAanfnB7HD3WeBs222qPU9mk0IfPEq-ytNVt6fBLpVMdm2Bxo5s4AbHDfqxvttlMeRNiHavSDlWZztGJ11UqL376HL0_3L8tn7L18-NqebfOLJGsz4RlBeRUS2A5tVozbokwBIzTxoM1hWEGtKS3pmBmXDNvnZCF5twZUrg8nyM43LVdTKkrvWq7UOturwioyZCadKhJhzoYGiPXh0iIrdrFoWvGB__Dr_7A26SkVEKBKAoGqnU-_wKRL3ap</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chauhan, Diksha</creator><creator>Sbeah, Zen</creator><creator>Sorathiya, Vishal</creator><creator>Adhikari, Rammani</creator><creator>Dwivedi, Ram Prakash</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6121-5940</orcidid><orcidid>https://orcid.org/0000-0002-8689-453X</orcidid><orcidid>https://orcid.org/0000-0003-4896-1196</orcidid><orcidid>https://orcid.org/0000-0003-3778-0488</orcidid></search><sort><creationdate>20240801</creationdate><title>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</title><author>Chauhan, Diksha ; Sbeah, Zen ; Sorathiya, Vishal ; Adhikari, Rammani ; Dwivedi, Ram Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-8c45032a90432caa46c18b10bdabf0cb5b4b0a927b54baa44fcd895a66db15d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomolecules</topic><topic>biosensors</topic><topic>cancerous cells</topic><topic>plasmonics</topic><topic>waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chauhan, Diksha</creatorcontrib><creatorcontrib>Sbeah, Zen</creatorcontrib><creatorcontrib>Sorathiya, Vishal</creatorcontrib><creatorcontrib>Adhikari, Rammani</creatorcontrib><creatorcontrib>Dwivedi, Ram Prakash</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chauhan, Diksha</au><au>Sbeah, Zen</au><au>Sorathiya, Vishal</au><au>Adhikari, Rammani</au><au>Dwivedi, Ram Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>99</volume><issue>8</issue><spage>85540</spage><pages>85540-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>This paper presents the design and simulation of an I-shaped metal insulator metal waveguide-based nanosensor for biosensing applications. The device’s sensing property is investigated using the three-dimensional finite element method. In the proposed design a I-shaped cavity is coupled to the main waveguide that serves as a resonator to generate the resonance peaks. The refractive index of the material to be sensed is filled inside the I-shaped cavity. This sensor operates in the near and mid-infrared wavelength ranges. The device can identify a variety of biomolecules, including cancer cells and bacterial samples. The simulation results reveal that device shows different resonance dips for different refractive indexes of cancer cells. The device can obtain sensitivity of 1550 nm RIU −1 and 1250 nm RIU −1 among refractive index of normal and cancerous cell for basal and hella cancer cells, respectively. Instead of all these biomolecules, the nanosensor shows different resonance dips in the transmittance spectrum for DNA, RNA, and ribonucleoprotein. Furthermore, the sensor has demonstrated potential applicability as an HB concentration detector and for sensing other blood components. Moreover, we improved the structure characteristics by varying the length and centre area of the cavity, demonstrating that modifying the device parameters can boost sensitivity. After making structural adjustments to the device, the maximum sensitivity of 3000 nm RIU −1 is achieved for some bacterial samples.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad624b</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6121-5940</orcidid><orcidid>https://orcid.org/0000-0002-8689-453X</orcidid><orcidid>https://orcid.org/0000-0003-4896-1196</orcidid><orcidid>https://orcid.org/0000-0003-3778-0488</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2024-08, Vol.99 (8), p.85540 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ad624b |
source | Institute of Physics Journals |
subjects | biomolecules biosensors cancerous cells plasmonics waveguides |
title | Simulation study of a highly sensitive I-shaped Plasmonic nanosensor for sensing of biomolecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20study%20of%20a%20highly%20sensitive%20I-shaped%20Plasmonic%20nanosensor%20for%20sensing%20of%20biomolecules&rft.jtitle=Physica%20scripta&rft.au=Chauhan,%20Diksha&rft.date=2024-08-01&rft.volume=99&rft.issue=8&rft.spage=85540&rft.pages=85540-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad624b&rft_dat=%3Ciop_cross%3Epsad624b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |