Solution of steady state in the model polymer system with rupture and rebinding

In this paper, we study the steady state attained in our model polymer system that attempts to explain the relative motion between soft rubbing surfaces at the single polymer level. We generalize our one-dimensional model [Borah et al , 2016 Soft Matter 12 4406] by including the rebinding of interco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2024-03, Vol.99 (3), p.35946
Hauptverfasser: Shukla, Prakhar, Pathak, Neha, Debnath, Pallavi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35946
container_title Physica scripta
container_volume 99
creator Shukla, Prakhar
Pathak, Neha
Debnath, Pallavi
description In this paper, we study the steady state attained in our model polymer system that attempts to explain the relative motion between soft rubbing surfaces at the single polymer level. We generalize our one-dimensional model [Borah et al , 2016 Soft Matter 12 4406] by including the rebinding of interconnecting bonds between a flexible transducer (bead spring polymer) and a rigid fixed plate. The interconnecting bonds described as harmonic springs rupture and rebind stochastically when a constant force pulls the flexible transducer. We obtain a distinct steady state in stochastic simulations of the model when the bead positions and the bond states (closed or open) are independent of time, analogous to creep states in frictional systems and rupture termination states in earthquakes. The simulation results of the stochastic model for specific parameter sets agree with the numerical solution to the mean-field equations developed for analytical tractability. We develop an analytical solution for the steady state within the homotopy analysis method, which converges and agrees well with the numerical results.
doi_str_mv 10.1088/1402-4896/ad2758
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ad2758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psad2758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8e62be25e619cc17e946fc01d51925197ccb5579ab48df4631115794f588394c3</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLgunr3mJMn6yZp2iZHWXQVFvagnkOaDzdL25QkRfrvzbLiSQ-P4T1mhnkDwC1GDxgxtsIUkYIyXq-kJk3FzsDi93QOFgiVuGCc8ktwFeMBIVKTmi_A7s13U3J-gN7CmIzUcwaZDHQDTHsDe69NB0ffzb0JMM6Z08Mvl_YwTGOagoFy0DCY1g3aDZ_X4MLKLpqbH1yCj-en9_VLsd1tXteP20KVGKeCmZq0hlSmxlwp3BhOa6sQ1hXmJE-jVFtVDZctZdrSOotwXqmtGCs5VeUSoJOvCj7GYKwYg-tlmAVG4liIOH4vjt-LUyFZcneSOD-Kg5_CkAOKMQrORSlQWeUMYtQ2E-__IP7r-w1odG4_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution of steady state in the model polymer system with rupture and rebinding</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shukla, Prakhar ; Pathak, Neha ; Debnath, Pallavi</creator><creatorcontrib>Shukla, Prakhar ; Pathak, Neha ; Debnath, Pallavi</creatorcontrib><description>In this paper, we study the steady state attained in our model polymer system that attempts to explain the relative motion between soft rubbing surfaces at the single polymer level. We generalize our one-dimensional model [Borah et al , 2016 Soft Matter 12 4406] by including the rebinding of interconnecting bonds between a flexible transducer (bead spring polymer) and a rigid fixed plate. The interconnecting bonds described as harmonic springs rupture and rebind stochastically when a constant force pulls the flexible transducer. We obtain a distinct steady state in stochastic simulations of the model when the bead positions and the bond states (closed or open) are independent of time, analogous to creep states in frictional systems and rupture termination states in earthquakes. The simulation results of the stochastic model for specific parameter sets agree with the numerical solution to the mean-field equations developed for analytical tractability. We develop an analytical solution for the steady state within the homotopy analysis method, which converges and agrees well with the numerical results.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ad2758</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>HAM ; one-dimensional ; polymer model ; rebinding ; rupture ; steady state</subject><ispartof>Physica scripta, 2024-03, Vol.99 (3), p.35946</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-8e62be25e619cc17e946fc01d51925197ccb5579ab48df4631115794f588394c3</citedby><cites>FETCH-LOGICAL-c311t-8e62be25e619cc17e946fc01d51925197ccb5579ab48df4631115794f588394c3</cites><orcidid>0000-0001-6318-3244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ad2758/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Shukla, Prakhar</creatorcontrib><creatorcontrib>Pathak, Neha</creatorcontrib><creatorcontrib>Debnath, Pallavi</creatorcontrib><title>Solution of steady state in the model polymer system with rupture and rebinding</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>In this paper, we study the steady state attained in our model polymer system that attempts to explain the relative motion between soft rubbing surfaces at the single polymer level. We generalize our one-dimensional model [Borah et al , 2016 Soft Matter 12 4406] by including the rebinding of interconnecting bonds between a flexible transducer (bead spring polymer) and a rigid fixed plate. The interconnecting bonds described as harmonic springs rupture and rebind stochastically when a constant force pulls the flexible transducer. We obtain a distinct steady state in stochastic simulations of the model when the bead positions and the bond states (closed or open) are independent of time, analogous to creep states in frictional systems and rupture termination states in earthquakes. The simulation results of the stochastic model for specific parameter sets agree with the numerical solution to the mean-field equations developed for analytical tractability. We develop an analytical solution for the steady state within the homotopy analysis method, which converges and agrees well with the numerical results.</description><subject>HAM</subject><subject>one-dimensional</subject><subject>polymer model</subject><subject>rebinding</subject><subject>rupture</subject><subject>steady state</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKLgunr3mJMn6yZp2iZHWXQVFvagnkOaDzdL25QkRfrvzbLiSQ-P4T1mhnkDwC1GDxgxtsIUkYIyXq-kJk3FzsDi93QOFgiVuGCc8ktwFeMBIVKTmi_A7s13U3J-gN7CmIzUcwaZDHQDTHsDe69NB0ffzb0JMM6Z08Mvl_YwTGOagoFy0DCY1g3aDZ_X4MLKLpqbH1yCj-en9_VLsd1tXteP20KVGKeCmZq0hlSmxlwp3BhOa6sQ1hXmJE-jVFtVDZctZdrSOotwXqmtGCs5VeUSoJOvCj7GYKwYg-tlmAVG4liIOH4vjt-LUyFZcneSOD-Kg5_CkAOKMQrORSlQWeUMYtQ2E-__IP7r-w1odG4_</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Shukla, Prakhar</creator><creator>Pathak, Neha</creator><creator>Debnath, Pallavi</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6318-3244</orcidid></search><sort><creationdate>20240301</creationdate><title>Solution of steady state in the model polymer system with rupture and rebinding</title><author>Shukla, Prakhar ; Pathak, Neha ; Debnath, Pallavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8e62be25e619cc17e946fc01d51925197ccb5579ab48df4631115794f588394c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>HAM</topic><topic>one-dimensional</topic><topic>polymer model</topic><topic>rebinding</topic><topic>rupture</topic><topic>steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Prakhar</creatorcontrib><creatorcontrib>Pathak, Neha</creatorcontrib><creatorcontrib>Debnath, Pallavi</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, Prakhar</au><au>Pathak, Neha</au><au>Debnath, Pallavi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of steady state in the model polymer system with rupture and rebinding</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>99</volume><issue>3</issue><spage>35946</spage><pages>35946-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>In this paper, we study the steady state attained in our model polymer system that attempts to explain the relative motion between soft rubbing surfaces at the single polymer level. We generalize our one-dimensional model [Borah et al , 2016 Soft Matter 12 4406] by including the rebinding of interconnecting bonds between a flexible transducer (bead spring polymer) and a rigid fixed plate. The interconnecting bonds described as harmonic springs rupture and rebind stochastically when a constant force pulls the flexible transducer. We obtain a distinct steady state in stochastic simulations of the model when the bead positions and the bond states (closed or open) are independent of time, analogous to creep states in frictional systems and rupture termination states in earthquakes. The simulation results of the stochastic model for specific parameter sets agree with the numerical solution to the mean-field equations developed for analytical tractability. We develop an analytical solution for the steady state within the homotopy analysis method, which converges and agrees well with the numerical results.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ad2758</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6318-3244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2024-03, Vol.99 (3), p.35946
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ad2758
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects HAM
one-dimensional
polymer model
rebinding
rupture
steady state
title Solution of steady state in the model polymer system with rupture and rebinding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T09%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20steady%20state%20in%20the%20model%20polymer%20system%20with%20rupture%20and%20rebinding&rft.jtitle=Physica%20scripta&rft.au=Shukla,%20Prakhar&rft.date=2024-03-01&rft.volume=99&rft.issue=3&rft.spage=35946&rft.pages=35946-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ad2758&rft_dat=%3Ciop_cross%3Epsad2758%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true