3D permanent magnetic lattices for ultracold atoms

We introduce 3D permanent magnetic lattices for ultracold atoms which can be created by arbitrary number of 2D arrays of square permanent magnetic slabs plus a bias magnetic field. Instead of the square magnets, we can also use magnetic films with square holes. We find analytical expressions for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-10, Vol.98 (10), p.105412
1. Verfasser: Ghanbari, Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105412
container_title Physica scripta
container_volume 98
creator Ghanbari, Saeed
description We introduce 3D permanent magnetic lattices for ultracold atoms which can be created by arbitrary number of 2D arrays of square permanent magnetic slabs plus a bias magnetic field. Instead of the square magnets, we can also use magnetic films with square holes. We find analytical expressions for the location of the nonzero magnetic field minima and physical quantities such as trap depths, absolute value of the magnetic field and curvatures as well as trap frequencies at each minimum. We show that most of them, including the trap depths, modulation depths, and trap frequencies can be controlled by the bias field. Accessible trap depths and trap frequencies in the permanent magnetic lattices are much higher compared to the optical lattices. Between the magnetic layers, the trap frequencies are higher compared to above the top layer (under the bottom layer). In principle, our method can be generalized to other 2D permanent magnetic lattices and we show how to transform a 2D lattice of a given geometry into 3D by using multiple layers of magnets.
doi_str_mv 10.1088/1402-4896/acfa2e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_acfa2e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacfa2e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-23b1454e5352bc25751bde86ffad10c5c23164e474a7e05cdf0c116fe7979d303</originalsourceid><addsrcrecordid>eNp9jztLBDEUhYMoOK72ltPZOO7Nc5JS1ics2GgdMnnILPMiyRb-e2cYsRKrA5fzHe6H0DWGOwxSbjEDUjGpxNbYYIg_QcXv6RQVABRXUjF1ji5SOgAQQYQqEKEP5eRjbwY_5LI3n4PPrS07k-fwqQxjLI9djsaOnStNHvt0ic6C6ZK_-skN-nh6fN-9VPu359fd_b6yRPBcEdpgxpnnlJPGEl5z3DgvRQjGYbDcEooF86xmpvbArQtgMRbB16pWjgLdIFh3bRxTij7oKba9iV8ag16c9SKoF0G9Os_I7Yq046QP4zEO84P_1W_-qE9JK7lCnGGiJxfoNwmmZV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D permanent magnetic lattices for ultracold atoms</title><source>Institute of Physics Journals</source><creator>Ghanbari, Saeed</creator><creatorcontrib>Ghanbari, Saeed</creatorcontrib><description>We introduce 3D permanent magnetic lattices for ultracold atoms which can be created by arbitrary number of 2D arrays of square permanent magnetic slabs plus a bias magnetic field. Instead of the square magnets, we can also use magnetic films with square holes. We find analytical expressions for the location of the nonzero magnetic field minima and physical quantities such as trap depths, absolute value of the magnetic field and curvatures as well as trap frequencies at each minimum. We show that most of them, including the trap depths, modulation depths, and trap frequencies can be controlled by the bias field. Accessible trap depths and trap frequencies in the permanent magnetic lattices are much higher compared to the optical lattices. Between the magnetic layers, the trap frequencies are higher compared to above the top layer (under the bottom layer). In principle, our method can be generalized to other 2D permanent magnetic lattices and we show how to transform a 2D lattice of a given geometry into 3D by using multiple layers of magnets.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acfa2e</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>artificial crystals ; atom chips ; Bose–Einstein condensates ; optical lattices ; periodic potentials ; quantum information ; quantum spin models</subject><ispartof>Physica scripta, 2023-10, Vol.98 (10), p.105412</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-23b1454e5352bc25751bde86ffad10c5c23164e474a7e05cdf0c116fe7979d303</cites><orcidid>0000-0001-5223-0797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/acfa2e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Ghanbari, Saeed</creatorcontrib><title>3D permanent magnetic lattices for ultracold atoms</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>We introduce 3D permanent magnetic lattices for ultracold atoms which can be created by arbitrary number of 2D arrays of square permanent magnetic slabs plus a bias magnetic field. Instead of the square magnets, we can also use magnetic films with square holes. We find analytical expressions for the location of the nonzero magnetic field minima and physical quantities such as trap depths, absolute value of the magnetic field and curvatures as well as trap frequencies at each minimum. We show that most of them, including the trap depths, modulation depths, and trap frequencies can be controlled by the bias field. Accessible trap depths and trap frequencies in the permanent magnetic lattices are much higher compared to the optical lattices. Between the magnetic layers, the trap frequencies are higher compared to above the top layer (under the bottom layer). In principle, our method can be generalized to other 2D permanent magnetic lattices and we show how to transform a 2D lattice of a given geometry into 3D by using multiple layers of magnets.</description><subject>artificial crystals</subject><subject>atom chips</subject><subject>Bose–Einstein condensates</subject><subject>optical lattices</subject><subject>periodic potentials</subject><subject>quantum information</subject><subject>quantum spin models</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9jztLBDEUhYMoOK72ltPZOO7Nc5JS1ics2GgdMnnILPMiyRb-e2cYsRKrA5fzHe6H0DWGOwxSbjEDUjGpxNbYYIg_QcXv6RQVABRXUjF1ji5SOgAQQYQqEKEP5eRjbwY_5LI3n4PPrS07k-fwqQxjLI9djsaOnStNHvt0ic6C6ZK_-skN-nh6fN-9VPu359fd_b6yRPBcEdpgxpnnlJPGEl5z3DgvRQjGYbDcEooF86xmpvbArQtgMRbB16pWjgLdIFh3bRxTij7oKba9iV8ag16c9SKoF0G9Os_I7Yq046QP4zEO84P_1W_-qE9JK7lCnGGiJxfoNwmmZV4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Ghanbari, Saeed</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5223-0797</orcidid></search><sort><creationdate>20231001</creationdate><title>3D permanent magnetic lattices for ultracold atoms</title><author>Ghanbari, Saeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-23b1454e5352bc25751bde86ffad10c5c23164e474a7e05cdf0c116fe7979d303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>artificial crystals</topic><topic>atom chips</topic><topic>Bose–Einstein condensates</topic><topic>optical lattices</topic><topic>periodic potentials</topic><topic>quantum information</topic><topic>quantum spin models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanbari, Saeed</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbari, Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D permanent magnetic lattices for ultracold atoms</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>98</volume><issue>10</issue><spage>105412</spage><pages>105412-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>We introduce 3D permanent magnetic lattices for ultracold atoms which can be created by arbitrary number of 2D arrays of square permanent magnetic slabs plus a bias magnetic field. Instead of the square magnets, we can also use magnetic films with square holes. We find analytical expressions for the location of the nonzero magnetic field minima and physical quantities such as trap depths, absolute value of the magnetic field and curvatures as well as trap frequencies at each minimum. We show that most of them, including the trap depths, modulation depths, and trap frequencies can be controlled by the bias field. Accessible trap depths and trap frequencies in the permanent magnetic lattices are much higher compared to the optical lattices. Between the magnetic layers, the trap frequencies are higher compared to above the top layer (under the bottom layer). In principle, our method can be generalized to other 2D permanent magnetic lattices and we show how to transform a 2D lattice of a given geometry into 3D by using multiple layers of magnets.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acfa2e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5223-0797</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2023-10, Vol.98 (10), p.105412
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_acfa2e
source Institute of Physics Journals
subjects artificial crystals
atom chips
Bose–Einstein condensates
optical lattices
periodic potentials
quantum information
quantum spin models
title 3D permanent magnetic lattices for ultracold atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20permanent%20magnetic%20lattices%20for%20ultracold%20atoms&rft.jtitle=Physica%20scripta&rft.au=Ghanbari,%20Saeed&rft.date=2023-10-01&rft.volume=98&rft.issue=10&rft.spage=105412&rft.pages=105412-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acfa2e&rft_dat=%3Ciop_cross%3Epsacfa2e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true