Predicting temperature field in keyhole-mode selective laser melting with combined heat sources: a rapid model
Predicting the temperature field during selective laser melting (SLM) is crucial for improving the performance of printed parts. However, there is still a lack of an efficient and accurate model for predicting the temperature field of keyhole-mode melting in SLM. Based on the physical phenomena of k...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2023-09, Vol.98 (9), p.95232 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 95232 |
container_title | Physica scripta |
container_volume | 98 |
creator | Li, Bing Li, Changyou Chunlei, Hua |
description | Predicting the temperature field during selective laser melting (SLM) is crucial for improving the performance of printed parts. However, there is still a lack of an efficient and accurate model for predicting the temperature field of keyhole-mode melting in SLM. Based on the physical phenomena of keyhole-mode melting observed in experiments and simulations, this study proposes an analytical model for rapidly predicting the temperature distribution during SLM keyhole-mode melting. The model considers vapor depression in the molten pool and the interaction between the laser and molten pool during keyhole-mode melting. The model was validated using numerical simulations and experimental data. The variation trend of the laser energy distribution and molten pool size with respect to the laser energy density was revealed. As the laser energy density increased, the depth of the molten pool and the vapor depression increased linearly, and the molten pool width increased to a peak and then remained constant. The process parameter window to avoid a lack-of-fusion was also investigated. With a computation time of 15 s and a prediction error of less than 10%, this model is an effective way to simulate SLM processes and guide the optimization of process parameters. |
doi_str_mv | 10.1088/1402-4896/acedd6 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_acedd6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacedd6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-951c0f65b5438a0f649ace9828729220b987ac09cecb8703f708547531aa10223</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM3piIvTsOInNhiq-pEowwGw59oW65Et2Cup_T0IRE2K60-m9p3c_Qs4ZXDGQcsEE8ERIlS-MRefyAzL7PR2SGUDKEqmEOiYnMW4AeM5zNSPtc0Dn7eDbNzpg02MwwzYgrTzWjvqWvuNu3dWYNJ1DGrHGUfuBtDYRA22w_nZ--mFNbdeUvkVH12gGGrttsBivqaHB9N7RKaA-JUeVqSOe_cw5eb27fVk-JKun-8flzSqxPBdDojJmocqzMhOpNOMm1PiVklwWXHEOpZKFsaAs2lIWkFYFyEwUWcqMYcB5Oiewz7WhizFgpfvgGxN2moGeeOkJjp7g6D2v0XK5t_iu15uxfTsW_E9-8Ye8j1pJrTSojKdc965KvwDnz3sP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting temperature field in keyhole-mode selective laser melting with combined heat sources: a rapid model</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Li, Bing ; Li, Changyou ; Chunlei, Hua</creator><creatorcontrib>Li, Bing ; Li, Changyou ; Chunlei, Hua</creatorcontrib><description>Predicting the temperature field during selective laser melting (SLM) is crucial for improving the performance of printed parts. However, there is still a lack of an efficient and accurate model for predicting the temperature field of keyhole-mode melting in SLM. Based on the physical phenomena of keyhole-mode melting observed in experiments and simulations, this study proposes an analytical model for rapidly predicting the temperature distribution during SLM keyhole-mode melting. The model considers vapor depression in the molten pool and the interaction between the laser and molten pool during keyhole-mode melting. The model was validated using numerical simulations and experimental data. The variation trend of the laser energy distribution and molten pool size with respect to the laser energy density was revealed. As the laser energy density increased, the depth of the molten pool and the vapor depression increased linearly, and the molten pool width increased to a peak and then remained constant. The process parameter window to avoid a lack-of-fusion was also investigated. With a computation time of 15 s and a prediction error of less than 10%, this model is an effective way to simulate SLM processes and guide the optimization of process parameters.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acedd6</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>additive manufacturing ; heat conduction ; keyhole-mode melting ; molten pool ; selective laser melting ; thermal simulation</subject><ispartof>Physica scripta, 2023-09, Vol.98 (9), p.95232</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-951c0f65b5438a0f649ace9828729220b987ac09cecb8703f708547531aa10223</cites><orcidid>0000-0003-0076-074X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/acedd6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Li, Changyou</creatorcontrib><creatorcontrib>Chunlei, Hua</creatorcontrib><title>Predicting temperature field in keyhole-mode selective laser melting with combined heat sources: a rapid model</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Predicting the temperature field during selective laser melting (SLM) is crucial for improving the performance of printed parts. However, there is still a lack of an efficient and accurate model for predicting the temperature field of keyhole-mode melting in SLM. Based on the physical phenomena of keyhole-mode melting observed in experiments and simulations, this study proposes an analytical model for rapidly predicting the temperature distribution during SLM keyhole-mode melting. The model considers vapor depression in the molten pool and the interaction between the laser and molten pool during keyhole-mode melting. The model was validated using numerical simulations and experimental data. The variation trend of the laser energy distribution and molten pool size with respect to the laser energy density was revealed. As the laser energy density increased, the depth of the molten pool and the vapor depression increased linearly, and the molten pool width increased to a peak and then remained constant. The process parameter window to avoid a lack-of-fusion was also investigated. With a computation time of 15 s and a prediction error of less than 10%, this model is an effective way to simulate SLM processes and guide the optimization of process parameters.</description><subject>additive manufacturing</subject><subject>heat conduction</subject><subject>keyhole-mode melting</subject><subject>molten pool</subject><subject>selective laser melting</subject><subject>thermal simulation</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwM3piIvTsOInNhiq-pEowwGw59oW65Et2Cup_T0IRE2K60-m9p3c_Qs4ZXDGQcsEE8ERIlS-MRefyAzL7PR2SGUDKEqmEOiYnMW4AeM5zNSPtc0Dn7eDbNzpg02MwwzYgrTzWjvqWvuNu3dWYNJ1DGrHGUfuBtDYRA22w_nZ--mFNbdeUvkVH12gGGrttsBivqaHB9N7RKaA-JUeVqSOe_cw5eb27fVk-JKun-8flzSqxPBdDojJmocqzMhOpNOMm1PiVklwWXHEOpZKFsaAs2lIWkFYFyEwUWcqMYcB5Oiewz7WhizFgpfvgGxN2moGeeOkJjp7g6D2v0XK5t_iu15uxfTsW_E9-8Ye8j1pJrTSojKdc965KvwDnz3sP</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Li, Bing</creator><creator>Li, Changyou</creator><creator>Chunlei, Hua</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0076-074X</orcidid></search><sort><creationdate>20230901</creationdate><title>Predicting temperature field in keyhole-mode selective laser melting with combined heat sources: a rapid model</title><author>Li, Bing ; Li, Changyou ; Chunlei, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-951c0f65b5438a0f649ace9828729220b987ac09cecb8703f708547531aa10223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>additive manufacturing</topic><topic>heat conduction</topic><topic>keyhole-mode melting</topic><topic>molten pool</topic><topic>selective laser melting</topic><topic>thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Li, Changyou</creatorcontrib><creatorcontrib>Chunlei, Hua</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bing</au><au>Li, Changyou</au><au>Chunlei, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting temperature field in keyhole-mode selective laser melting with combined heat sources: a rapid model</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>98</volume><issue>9</issue><spage>95232</spage><pages>95232-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Predicting the temperature field during selective laser melting (SLM) is crucial for improving the performance of printed parts. However, there is still a lack of an efficient and accurate model for predicting the temperature field of keyhole-mode melting in SLM. Based on the physical phenomena of keyhole-mode melting observed in experiments and simulations, this study proposes an analytical model for rapidly predicting the temperature distribution during SLM keyhole-mode melting. The model considers vapor depression in the molten pool and the interaction between the laser and molten pool during keyhole-mode melting. The model was validated using numerical simulations and experimental data. The variation trend of the laser energy distribution and molten pool size with respect to the laser energy density was revealed. As the laser energy density increased, the depth of the molten pool and the vapor depression increased linearly, and the molten pool width increased to a peak and then remained constant. The process parameter window to avoid a lack-of-fusion was also investigated. With a computation time of 15 s and a prediction error of less than 10%, this model is an effective way to simulate SLM processes and guide the optimization of process parameters.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acedd6</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0076-074X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2023-09, Vol.98 (9), p.95232 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_acedd6 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | additive manufacturing heat conduction keyhole-mode melting molten pool selective laser melting thermal simulation |
title | Predicting temperature field in keyhole-mode selective laser melting with combined heat sources: a rapid model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20temperature%20field%20in%20keyhole-mode%20selective%20laser%20melting%20with%20combined%20heat%20sources:%20a%20rapid%20model&rft.jtitle=Physica%20scripta&rft.au=Li,%20Bing&rft.date=2023-09-01&rft.volume=98&rft.issue=9&rft.spage=95232&rft.pages=95232-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acedd6&rft_dat=%3Ciop_cross%3Epsacedd6%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |