Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei

The knowledge of beta-decay transitional probabilities and Gamow-Teller (GT) strength functions from highly excited states of nuclides is of particular importance for applications to astrophysical network calculations of nucleosynthesis in explosive stellar events. These quantities are challenging t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-08, Vol.98 (8), p.85313
Hauptverfasser: Farooq, Fakeha, Nabi, Jameel-Un, Shehzadi, Ramoona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85313
container_title Physica scripta
container_volume 98
creator Farooq, Fakeha
Nabi, Jameel-Un
Shehzadi, Ramoona
description The knowledge of beta-decay transitional probabilities and Gamow-Teller (GT) strength functions from highly excited states of nuclides is of particular importance for applications to astrophysical network calculations of nucleosynthesis in explosive stellar events. These quantities are challenging to achieve from measurements or computations using various nuclear models. Due to unavailability of feasible alternatives, many theoretical studies often rely on the Brink-Axel (BA) hypothesis, that is, the response of strength functions depends merely on the transition energy of the parent nuclear ground state and is independent of the underlying details of the parent state, for the calculation of stellar rates. BA hypothesis has been used in many applications from nuclear structure determination to nucleosynthesis yield in the astrophysical matter. We explore here the the validity of BA hypothesis in the calculation of stellar beta-decay (BD) and electron capture (EC) weak rates of fp- and fpg-shell nuclides for GT transitions. Strength functions have been computed employing the fully microscopic proton-neutron QRPA (quasi-particle random-phase approximation) within a broad density, ρ Y e = (10-10 11 ) [g cm −3 ], and temperature, T = (1−30) [GK], grid relevant to the pre-collapse astrophysical environment. Our work provides evidence that the use of the approximation based on the BA hypothesis does not lead to reliable calculations of excited states strength functions under extreme temperature-density conditions characteristic of presupernova and supernova evolution of massive stars. Weak rates obtained by incorporating the BA hypothesis in the calculation of strength functions substantially deviate from the rates based on the state-by-state microscopically calculated strength functions. Deviation in the two calculations becomes significant as early as neon burning phases of massive stars. The deviation in the calculation of BD rates is even more pronounced, reaching up to three orders of magnitude.
doi_str_mv 10.1088/1402-4896/ace79c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ace79c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psace79c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-3564057bc310c8bc10bcfc496d2cda7568fd1dd7aee1233a8a15d1e4604180b43</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EEqWwM3piIvQcO4kzlgooUiUWYDWO7ahuTRzZCSX_noYiJsR0urv3nU4PoUsCNwQ4nxEGacJ4mc-kMkWpjtDkd3SMJgCUJLxk5Sk6i3EDkOZpXk7Q26t0VttuwL7Gt8E222T-aRxeDq3v1ibaiGsfsJJO9U521jdxJKVzfmc0jp1xTga8M3KLg-zM93Zt5MeAm145Y8_RSS1dNBc_dYpe7u-eF8tk9fTwuJivEkUJ6RKa5Qyyotp3oHilCFSqVqzMdaq0LLKc15poXUhjSEqp5JJkmhiWAyMcKkanCA53VfAxBlOLNth3GQZBQIyGxKhDjDrEwdA-cn2IWN-Kje9Ds3_wP_zqD7yNouSCC-AZJVS0uqZfFft2NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Farooq, Fakeha ; Nabi, Jameel-Un ; Shehzadi, Ramoona</creator><creatorcontrib>Farooq, Fakeha ; Nabi, Jameel-Un ; Shehzadi, Ramoona</creatorcontrib><description>The knowledge of beta-decay transitional probabilities and Gamow-Teller (GT) strength functions from highly excited states of nuclides is of particular importance for applications to astrophysical network calculations of nucleosynthesis in explosive stellar events. These quantities are challenging to achieve from measurements or computations using various nuclear models. Due to unavailability of feasible alternatives, many theoretical studies often rely on the Brink-Axel (BA) hypothesis, that is, the response of strength functions depends merely on the transition energy of the parent nuclear ground state and is independent of the underlying details of the parent state, for the calculation of stellar rates. BA hypothesis has been used in many applications from nuclear structure determination to nucleosynthesis yield in the astrophysical matter. We explore here the the validity of BA hypothesis in the calculation of stellar beta-decay (BD) and electron capture (EC) weak rates of fp- and fpg-shell nuclides for GT transitions. Strength functions have been computed employing the fully microscopic proton-neutron QRPA (quasi-particle random-phase approximation) within a broad density, ρ Y e = (10-10 11 ) [g cm −3 ], and temperature, T = (1−30) [GK], grid relevant to the pre-collapse astrophysical environment. Our work provides evidence that the use of the approximation based on the BA hypothesis does not lead to reliable calculations of excited states strength functions under extreme temperature-density conditions characteristic of presupernova and supernova evolution of massive stars. Weak rates obtained by incorporating the BA hypothesis in the calculation of strength functions substantially deviate from the rates based on the state-by-state microscopically calculated strength functions. Deviation in the two calculations becomes significant as early as neon burning phases of massive stars. The deviation in the calculation of BD rates is even more pronounced, reaching up to three orders of magnitude.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ace79c</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Beta decay ; Brink-Axel hypothesis ; electron capture ; GT transitions ; proton neutron QRPA model</subject><ispartof>Physica scripta, 2023-08, Vol.98 (8), p.85313</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-3564057bc310c8bc10bcfc496d2cda7568fd1dd7aee1233a8a15d1e4604180b43</citedby><cites>FETCH-LOGICAL-c311t-3564057bc310c8bc10bcfc496d2cda7568fd1dd7aee1233a8a15d1e4604180b43</cites><orcidid>0000-0002-8522-9431 ; 0000-0002-8229-8757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ace79c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Farooq, Fakeha</creatorcontrib><creatorcontrib>Nabi, Jameel-Un</creatorcontrib><creatorcontrib>Shehzadi, Ramoona</creatorcontrib><title>Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The knowledge of beta-decay transitional probabilities and Gamow-Teller (GT) strength functions from highly excited states of nuclides is of particular importance for applications to astrophysical network calculations of nucleosynthesis in explosive stellar events. These quantities are challenging to achieve from measurements or computations using various nuclear models. Due to unavailability of feasible alternatives, many theoretical studies often rely on the Brink-Axel (BA) hypothesis, that is, the response of strength functions depends merely on the transition energy of the parent nuclear ground state and is independent of the underlying details of the parent state, for the calculation of stellar rates. BA hypothesis has been used in many applications from nuclear structure determination to nucleosynthesis yield in the astrophysical matter. We explore here the the validity of BA hypothesis in the calculation of stellar beta-decay (BD) and electron capture (EC) weak rates of fp- and fpg-shell nuclides for GT transitions. Strength functions have been computed employing the fully microscopic proton-neutron QRPA (quasi-particle random-phase approximation) within a broad density, ρ Y e = (10-10 11 ) [g cm −3 ], and temperature, T = (1−30) [GK], grid relevant to the pre-collapse astrophysical environment. Our work provides evidence that the use of the approximation based on the BA hypothesis does not lead to reliable calculations of excited states strength functions under extreme temperature-density conditions characteristic of presupernova and supernova evolution of massive stars. Weak rates obtained by incorporating the BA hypothesis in the calculation of strength functions substantially deviate from the rates based on the state-by-state microscopically calculated strength functions. Deviation in the two calculations becomes significant as early as neon burning phases of massive stars. The deviation in the calculation of BD rates is even more pronounced, reaching up to three orders of magnitude.</description><subject>Beta decay</subject><subject>Brink-Axel hypothesis</subject><subject>electron capture</subject><subject>GT transitions</subject><subject>proton neutron QRPA model</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EEqWwM3piIvQcO4kzlgooUiUWYDWO7ahuTRzZCSX_noYiJsR0urv3nU4PoUsCNwQ4nxEGacJ4mc-kMkWpjtDkd3SMJgCUJLxk5Sk6i3EDkOZpXk7Q26t0VttuwL7Gt8E222T-aRxeDq3v1ibaiGsfsJJO9U521jdxJKVzfmc0jp1xTga8M3KLg-zM93Zt5MeAm145Y8_RSS1dNBc_dYpe7u-eF8tk9fTwuJivEkUJ6RKa5Qyyotp3oHilCFSqVqzMdaq0LLKc15poXUhjSEqp5JJkmhiWAyMcKkanCA53VfAxBlOLNth3GQZBQIyGxKhDjDrEwdA-cn2IWN-Kje9Ds3_wP_zqD7yNouSCC-AZJVS0uqZfFft2NA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Farooq, Fakeha</creator><creator>Nabi, Jameel-Un</creator><creator>Shehzadi, Ramoona</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8522-9431</orcidid><orcidid>https://orcid.org/0000-0002-8229-8757</orcidid></search><sort><creationdate>20230801</creationdate><title>Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei</title><author>Farooq, Fakeha ; Nabi, Jameel-Un ; Shehzadi, Ramoona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-3564057bc310c8bc10bcfc496d2cda7568fd1dd7aee1233a8a15d1e4604180b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beta decay</topic><topic>Brink-Axel hypothesis</topic><topic>electron capture</topic><topic>GT transitions</topic><topic>proton neutron QRPA model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Fakeha</creatorcontrib><creatorcontrib>Nabi, Jameel-Un</creatorcontrib><creatorcontrib>Shehzadi, Ramoona</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farooq, Fakeha</au><au>Nabi, Jameel-Un</au><au>Shehzadi, Ramoona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>98</volume><issue>8</issue><spage>85313</spage><pages>85313-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The knowledge of beta-decay transitional probabilities and Gamow-Teller (GT) strength functions from highly excited states of nuclides is of particular importance for applications to astrophysical network calculations of nucleosynthesis in explosive stellar events. These quantities are challenging to achieve from measurements or computations using various nuclear models. Due to unavailability of feasible alternatives, many theoretical studies often rely on the Brink-Axel (BA) hypothesis, that is, the response of strength functions depends merely on the transition energy of the parent nuclear ground state and is independent of the underlying details of the parent state, for the calculation of stellar rates. BA hypothesis has been used in many applications from nuclear structure determination to nucleosynthesis yield in the astrophysical matter. We explore here the the validity of BA hypothesis in the calculation of stellar beta-decay (BD) and electron capture (EC) weak rates of fp- and fpg-shell nuclides for GT transitions. Strength functions have been computed employing the fully microscopic proton-neutron QRPA (quasi-particle random-phase approximation) within a broad density, ρ Y e = (10-10 11 ) [g cm −3 ], and temperature, T = (1−30) [GK], grid relevant to the pre-collapse astrophysical environment. Our work provides evidence that the use of the approximation based on the BA hypothesis does not lead to reliable calculations of excited states strength functions under extreme temperature-density conditions characteristic of presupernova and supernova evolution of massive stars. Weak rates obtained by incorporating the BA hypothesis in the calculation of strength functions substantially deviate from the rates based on the state-by-state microscopically calculated strength functions. Deviation in the two calculations becomes significant as early as neon burning phases of massive stars. The deviation in the calculation of BD rates is even more pronounced, reaching up to three orders of magnitude.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ace79c</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8522-9431</orcidid><orcidid>https://orcid.org/0000-0002-8229-8757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2023-08, Vol.98 (8), p.85313
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ace79c
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Beta decay
Brink-Axel hypothesis
electron capture
GT transitions
proton neutron QRPA model
title Validity of Brink-Axel Hypothesis for calculations of allowed stellar weak rates of heavy nuclei
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20of%20Brink-Axel%20Hypothesis%20for%20calculations%20of%20allowed%20stellar%20weak%20rates%20of%20heavy%20nuclei&rft.jtitle=Physica%20scripta&rft.au=Farooq,%20Fakeha&rft.date=2023-08-01&rft.volume=98&rft.issue=8&rft.spage=85313&rft.pages=85313-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ace79c&rft_dat=%3Ciop_cross%3Epsace79c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true