Modeling and complexity analysis of a fractional-order memristor conservative chaotic system
Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of t...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2023-07, Vol.98 (7), p.75206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 75206 |
container_title | Physica scripta |
container_volume | 98 |
creator | Leng, Xiangxin Zhang, Limeng Zhang, Chenkai Du, Baoxiang |
description | Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform. |
doi_str_mv | 10.1088/1402-4896/acd96d |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_acd96d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacd96d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK7ePebkybpJmrbpURZdhRUvehPCa_KqWdpNSeJi_71dVjzp6fGGmYH5CLnk7IYzpRZcMpFJVZcLMLYu7RGZ_UrHZMZYzjNVy_qUnMW4YUyUoqxn5O3JW-zc9p3C1lLj-6HDL5fG6YVujC5S31KgbQCTnJ-0zAeLgfbYBxeTD1NmGzHsILkdUvMBPjlD4xgT9ufkpIUu4sXPnZPX-7uX5UO2fl49Lm_Xmck5T1kNhcllhXmhTFFMYwyyAhjYHIW0ikMlBIPSYstVgyCxaS2ovCllJRrJVT4n7NBrgo8xYKuH4HoIo-ZM7-noPQq9R6EPdKbI1SHi_KA3_jNM06Ieoq6VrjSrCsFKPdh2Ml7_Yfy39xtoA3YR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Leng, Xiangxin ; Zhang, Limeng ; Zhang, Chenkai ; Du, Baoxiang</creator><creatorcontrib>Leng, Xiangxin ; Zhang, Limeng ; Zhang, Chenkai ; Du, Baoxiang</creatorcontrib><description>Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acd96d</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>complexity ; conservative system ; fractional-order ; memristor</subject><ispartof>Physica scripta, 2023-07, Vol.98 (7), p.75206</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</citedby><cites>FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</cites><orcidid>0000-0001-6300-5907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/acd96d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Leng, Xiangxin</creatorcontrib><creatorcontrib>Zhang, Limeng</creatorcontrib><creatorcontrib>Zhang, Chenkai</creatorcontrib><creatorcontrib>Du, Baoxiang</creatorcontrib><title>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.</description><subject>complexity</subject><subject>conservative system</subject><subject>fractional-order</subject><subject>memristor</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK7ePebkybpJmrbpURZdhRUvehPCa_KqWdpNSeJi_71dVjzp6fGGmYH5CLnk7IYzpRZcMpFJVZcLMLYu7RGZ_UrHZMZYzjNVy_qUnMW4YUyUoqxn5O3JW-zc9p3C1lLj-6HDL5fG6YVujC5S31KgbQCTnJ-0zAeLgfbYBxeTD1NmGzHsILkdUvMBPjlD4xgT9ufkpIUu4sXPnZPX-7uX5UO2fl49Lm_Xmck5T1kNhcllhXmhTFFMYwyyAhjYHIW0ikMlBIPSYstVgyCxaS2ovCllJRrJVT4n7NBrgo8xYKuH4HoIo-ZM7-noPQq9R6EPdKbI1SHi_KA3_jNM06Ieoq6VrjSrCsFKPdh2Ml7_Yfy39xtoA3YR</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Leng, Xiangxin</creator><creator>Zhang, Limeng</creator><creator>Zhang, Chenkai</creator><creator>Du, Baoxiang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6300-5907</orcidid></search><sort><creationdate>20230701</creationdate><title>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</title><author>Leng, Xiangxin ; Zhang, Limeng ; Zhang, Chenkai ; Du, Baoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>complexity</topic><topic>conservative system</topic><topic>fractional-order</topic><topic>memristor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Xiangxin</creatorcontrib><creatorcontrib>Zhang, Limeng</creatorcontrib><creatorcontrib>Zhang, Chenkai</creatorcontrib><creatorcontrib>Du, Baoxiang</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Xiangxin</au><au>Zhang, Limeng</au><au>Zhang, Chenkai</au><au>Du, Baoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>98</volume><issue>7</issue><spage>75206</spage><pages>75206-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acd96d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6300-5907</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2023-07, Vol.98 (7), p.75206 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_acd96d |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | complexity conservative system fractional-order memristor |
title | Modeling and complexity analysis of a fractional-order memristor conservative chaotic system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20complexity%20analysis%20of%20a%20fractional-order%20memristor%20conservative%20chaotic%20system&rft.jtitle=Physica%20scripta&rft.au=Leng,%20Xiangxin&rft.date=2023-07-01&rft.volume=98&rft.issue=7&rft.spage=75206&rft.pages=75206-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acd96d&rft_dat=%3Ciop_cross%3Epsacd96d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |