Modeling and complexity analysis of a fractional-order memristor conservative chaotic system

Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2023-07, Vol.98 (7), p.75206
Hauptverfasser: Leng, Xiangxin, Zhang, Limeng, Zhang, Chenkai, Du, Baoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 75206
container_title Physica scripta
container_volume 98
creator Leng, Xiangxin
Zhang, Limeng
Zhang, Chenkai
Du, Baoxiang
description Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.
doi_str_mv 10.1088/1402-4896/acd96d
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_acd96d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psacd96d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</originalsourceid><addsrcrecordid>eNp1kEFLxDAUhIMouK7ePebkybpJmrbpURZdhRUvehPCa_KqWdpNSeJi_71dVjzp6fGGmYH5CLnk7IYzpRZcMpFJVZcLMLYu7RGZ_UrHZMZYzjNVy_qUnMW4YUyUoqxn5O3JW-zc9p3C1lLj-6HDL5fG6YVujC5S31KgbQCTnJ-0zAeLgfbYBxeTD1NmGzHsILkdUvMBPjlD4xgT9ufkpIUu4sXPnZPX-7uX5UO2fl49Lm_Xmck5T1kNhcllhXmhTFFMYwyyAhjYHIW0ikMlBIPSYstVgyCxaS2ovCllJRrJVT4n7NBrgo8xYKuH4HoIo-ZM7-noPQq9R6EPdKbI1SHi_KA3_jNM06Ieoq6VrjSrCsFKPdh2Ml7_Yfy39xtoA3YR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Leng, Xiangxin ; Zhang, Limeng ; Zhang, Chenkai ; Du, Baoxiang</creator><creatorcontrib>Leng, Xiangxin ; Zhang, Limeng ; Zhang, Chenkai ; Du, Baoxiang</creatorcontrib><description>Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/acd96d</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>complexity ; conservative system ; fractional-order ; memristor</subject><ispartof>Physica scripta, 2023-07, Vol.98 (7), p.75206</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</citedby><cites>FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</cites><orcidid>0000-0001-6300-5907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/acd96d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Leng, Xiangxin</creatorcontrib><creatorcontrib>Zhang, Limeng</creatorcontrib><creatorcontrib>Zhang, Chenkai</creatorcontrib><creatorcontrib>Du, Baoxiang</creatorcontrib><title>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.</description><subject>complexity</subject><subject>conservative system</subject><subject>fractional-order</subject><subject>memristor</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAUhIMouK7ePebkybpJmrbpURZdhRUvehPCa_KqWdpNSeJi_71dVjzp6fGGmYH5CLnk7IYzpRZcMpFJVZcLMLYu7RGZ_UrHZMZYzjNVy_qUnMW4YUyUoqxn5O3JW-zc9p3C1lLj-6HDL5fG6YVujC5S31KgbQCTnJ-0zAeLgfbYBxeTD1NmGzHsILkdUvMBPjlD4xgT9ufkpIUu4sXPnZPX-7uX5UO2fl49Lm_Xmck5T1kNhcllhXmhTFFMYwyyAhjYHIW0ikMlBIPSYstVgyCxaS2ovCllJRrJVT4n7NBrgo8xYKuH4HoIo-ZM7-noPQq9R6EPdKbI1SHi_KA3_jNM06Ieoq6VrjSrCsFKPdh2Ml7_Yfy39xtoA3YR</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Leng, Xiangxin</creator><creator>Zhang, Limeng</creator><creator>Zhang, Chenkai</creator><creator>Du, Baoxiang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6300-5907</orcidid></search><sort><creationdate>20230701</creationdate><title>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</title><author>Leng, Xiangxin ; Zhang, Limeng ; Zhang, Chenkai ; Du, Baoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-9a5c347e358c55088ce05a0ad3e24d81a7220a6def18bea4ebfda83b6472b4183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>complexity</topic><topic>conservative system</topic><topic>fractional-order</topic><topic>memristor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Xiangxin</creatorcontrib><creatorcontrib>Zhang, Limeng</creatorcontrib><creatorcontrib>Zhang, Chenkai</creatorcontrib><creatorcontrib>Du, Baoxiang</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Xiangxin</au><au>Zhang, Limeng</au><au>Zhang, Chenkai</au><au>Du, Baoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and complexity analysis of a fractional-order memristor conservative chaotic system</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>98</volume><issue>7</issue><spage>75206</spage><pages>75206-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Memristors are often utilized in circuit model analysis as one of the fundamental circuit components. In this paper, a five-dimensional conservative memristor chaotic system is built after the introduction of the memristor into a four-dimensional conservative chaotic system. The dynamic changes of the system are examined using phase diagram, mean value, and Lyapunov exponent spectrum. A line equilibrium point, symmetry and multi-stability are characteristics of the system; the phase trajectory can also produce shrinking and structure transformation behavior with the change of parameters. Furthermore, the system has initial offset boosting behaviors, conservative flows of it can be altered in position by changing two initial values, respectively. Most notably, we discover that the complexity of the system rises with the inclusion of memristor and again with the addition of fractional differential operators. It is shown that the complexity of chaotic systems may increase with the addition of memristors and fractional-order differential operators. At last, the NIST is used to test the randomness of the sequence, and the system's physical realizability is confirmed by the DSP platform.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/acd96d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6300-5907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2023-07, Vol.98 (7), p.75206
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_acd96d
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects complexity
conservative system
fractional-order
memristor
title Modeling and complexity analysis of a fractional-order memristor conservative chaotic system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20complexity%20analysis%20of%20a%20fractional-order%20memristor%20conservative%20chaotic%20system&rft.jtitle=Physica%20scripta&rft.au=Leng,%20Xiangxin&rft.date=2023-07-01&rft.volume=98&rft.issue=7&rft.spage=75206&rft.pages=75206-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/acd96d&rft_dat=%3Ciop_cross%3Epsacd96d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true