The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials
The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2022-05, Vol.97 (5), p.55805 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55805 |
container_title | Physica scripta |
container_volume | 97 |
creator | Shalaby, M S Elshahawy, Abdelnaby M Yousif, N M Agammy, E F El Elmosalami, T A Hasaneen, M F |
description | The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd
1-
x
Cu
x
O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap (
E
g
) decreases and Urbach energy (
E
u
) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments. |
doi_str_mv | 10.1088/1402-4896/ac6210 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ac6210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psac6210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMLO6Impoc9xYscjiviSkLqU2XL9QV3a2LJTJPj1JLRiQkz33r2709MhdE3glkDTzEkFZVE1gs2VZiWBEzT5pU7RBICSohGVOEcXOW8ASlYyMUHvy7XFbShistpH36veGjwsUSXV-9DNsF4Po-5t8l9HRnUGh9h7rbbYdx829_7t55RxcLjdFybEIaU1C9ypLuzUaFbbfInO3AD26ohT9Ppwv2yfipfF43N791JoSkhfGGYrYVYaBOecccfAiZWqqKYld8YIw4k1WtWcCEeNYIbpknBGq3olVAOOThEccnUKOSfrZEx-p9KnJCDHsuTYjBybkYeyBsvsYPEhyk3Yp2548D_5zR_ymKXgspZQ1w3UMhpHvwHQDnmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</title><source>Institute of Physics Journals</source><creator>Shalaby, M S ; Elshahawy, Abdelnaby M ; Yousif, N M ; Agammy, E F El ; Elmosalami, T A ; Hasaneen, M F</creator><creatorcontrib>Shalaby, M S ; Elshahawy, Abdelnaby M ; Yousif, N M ; Agammy, E F El ; Elmosalami, T A ; Hasaneen, M F</creatorcontrib><description>The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd
1-
x
Cu
x
O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap (
E
g
) decreases and Urbach energy (
E
u
) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ac6210</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Cu-doped and undoped CdO ; DTA ; energy gap ; refractive ; TEM ; XRD</subject><ispartof>Physica scripta, 2022-05, Vol.97 (5), p.55805</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</citedby><cites>FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</cites><orcidid>0000-0001-6545-9523 ; 0000-0001-7691-2039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ac6210/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Shalaby, M S</creatorcontrib><creatorcontrib>Elshahawy, Abdelnaby M</creatorcontrib><creatorcontrib>Yousif, N M</creatorcontrib><creatorcontrib>Agammy, E F El</creatorcontrib><creatorcontrib>Elmosalami, T A</creatorcontrib><creatorcontrib>Hasaneen, M F</creatorcontrib><title>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd
1-
x
Cu
x
O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap (
E
g
) decreases and Urbach energy (
E
u
) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.</description><subject>Cu-doped and undoped CdO</subject><subject>DTA</subject><subject>energy gap</subject><subject>refractive</subject><subject>TEM</subject><subject>XRD</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMLO6Impoc9xYscjiviSkLqU2XL9QV3a2LJTJPj1JLRiQkz33r2709MhdE3glkDTzEkFZVE1gs2VZiWBEzT5pU7RBICSohGVOEcXOW8ASlYyMUHvy7XFbShistpH36veGjwsUSXV-9DNsF4Po-5t8l9HRnUGh9h7rbbYdx829_7t55RxcLjdFybEIaU1C9ypLuzUaFbbfInO3AD26ohT9Ppwv2yfipfF43N791JoSkhfGGYrYVYaBOecccfAiZWqqKYld8YIw4k1WtWcCEeNYIbpknBGq3olVAOOThEccnUKOSfrZEx-p9KnJCDHsuTYjBybkYeyBsvsYPEhyk3Yp2548D_5zR_ymKXgspZQ1w3UMhpHvwHQDnmM</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Shalaby, M S</creator><creator>Elshahawy, Abdelnaby M</creator><creator>Yousif, N M</creator><creator>Agammy, E F El</creator><creator>Elmosalami, T A</creator><creator>Hasaneen, M F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6545-9523</orcidid><orcidid>https://orcid.org/0000-0001-7691-2039</orcidid></search><sort><creationdate>20220501</creationdate><title>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</title><author>Shalaby, M S ; Elshahawy, Abdelnaby M ; Yousif, N M ; Agammy, E F El ; Elmosalami, T A ; Hasaneen, M F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cu-doped and undoped CdO</topic><topic>DTA</topic><topic>energy gap</topic><topic>refractive</topic><topic>TEM</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shalaby, M S</creatorcontrib><creatorcontrib>Elshahawy, Abdelnaby M</creatorcontrib><creatorcontrib>Yousif, N M</creatorcontrib><creatorcontrib>Agammy, E F El</creatorcontrib><creatorcontrib>Elmosalami, T A</creatorcontrib><creatorcontrib>Hasaneen, M F</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalaby, M S</au><au>Elshahawy, Abdelnaby M</au><au>Yousif, N M</au><au>Agammy, E F El</au><au>Elmosalami, T A</au><au>Hasaneen, M F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>97</volume><issue>5</issue><spage>55805</spage><pages>55805-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd
1-
x
Cu
x
O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap (
E
g
) decreases and Urbach energy (
E
u
) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ac6210</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6545-9523</orcidid><orcidid>https://orcid.org/0000-0001-7691-2039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2022-05, Vol.97 (5), p.55805 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ac6210 |
source | Institute of Physics Journals |
subjects | Cu-doped and undoped CdO DTA energy gap refractive TEM XRD |
title | The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Co-precipitated%20preparation,%20characterization,%20and%20optical%20investigations%20of%20Cu-doped%20CdO%20nanomaterials&rft.jtitle=Physica%20scripta&rft.au=Shalaby,%20M%20S&rft.date=2022-05-01&rft.volume=97&rft.issue=5&rft.spage=55805&rft.pages=55805-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ac6210&rft_dat=%3Ciop_cross%3Epsac6210%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |