The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials

The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2022-05, Vol.97 (5), p.55805
Hauptverfasser: Shalaby, M S, Elshahawy, Abdelnaby M, Yousif, N M, Agammy, E F El, Elmosalami, T A, Hasaneen, M F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55805
container_title Physica scripta
container_volume 97
creator Shalaby, M S
Elshahawy, Abdelnaby M
Yousif, N M
Agammy, E F El
Elmosalami, T A
Hasaneen, M F
description The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd 1- x Cu x O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap ( E g ) decreases and Urbach energy ( E u ) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.
doi_str_mv 10.1088/1402-4896/ac6210
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ac6210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psac6210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMLO6Impoc9xYscjiviSkLqU2XL9QV3a2LJTJPj1JLRiQkz33r2709MhdE3glkDTzEkFZVE1gs2VZiWBEzT5pU7RBICSohGVOEcXOW8ASlYyMUHvy7XFbShistpH36veGjwsUSXV-9DNsF4Po-5t8l9HRnUGh9h7rbbYdx829_7t55RxcLjdFybEIaU1C9ypLuzUaFbbfInO3AD26ohT9Ppwv2yfipfF43N791JoSkhfGGYrYVYaBOecccfAiZWqqKYld8YIw4k1WtWcCEeNYIbpknBGq3olVAOOThEccnUKOSfrZEx-p9KnJCDHsuTYjBybkYeyBsvsYPEhyk3Yp2548D_5zR_ymKXgspZQ1w3UMhpHvwHQDnmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</title><source>Institute of Physics Journals</source><creator>Shalaby, M S ; Elshahawy, Abdelnaby M ; Yousif, N M ; Agammy, E F El ; Elmosalami, T A ; Hasaneen, M F</creator><creatorcontrib>Shalaby, M S ; Elshahawy, Abdelnaby M ; Yousif, N M ; Agammy, E F El ; Elmosalami, T A ; Hasaneen, M F</creatorcontrib><description>The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd 1- x Cu x O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap ( E g ) decreases and Urbach energy ( E u ) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ac6210</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Cu-doped and undoped CdO ; DTA ; energy gap ; refractive ; TEM ; XRD</subject><ispartof>Physica scripta, 2022-05, Vol.97 (5), p.55805</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</citedby><cites>FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</cites><orcidid>0000-0001-6545-9523 ; 0000-0001-7691-2039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ac6210/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Shalaby, M S</creatorcontrib><creatorcontrib>Elshahawy, Abdelnaby M</creatorcontrib><creatorcontrib>Yousif, N M</creatorcontrib><creatorcontrib>Agammy, E F El</creatorcontrib><creatorcontrib>Elmosalami, T A</creatorcontrib><creatorcontrib>Hasaneen, M F</creatorcontrib><title>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd 1- x Cu x O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap ( E g ) decreases and Urbach energy ( E u ) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.</description><subject>Cu-doped and undoped CdO</subject><subject>DTA</subject><subject>energy gap</subject><subject>refractive</subject><subject>TEM</subject><subject>XRD</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMLO6Impoc9xYscjiviSkLqU2XL9QV3a2LJTJPj1JLRiQkz33r2709MhdE3glkDTzEkFZVE1gs2VZiWBEzT5pU7RBICSohGVOEcXOW8ASlYyMUHvy7XFbShistpH36veGjwsUSXV-9DNsF4Po-5t8l9HRnUGh9h7rbbYdx829_7t55RxcLjdFybEIaU1C9ypLuzUaFbbfInO3AD26ohT9Ppwv2yfipfF43N791JoSkhfGGYrYVYaBOecccfAiZWqqKYld8YIw4k1WtWcCEeNYIbpknBGq3olVAOOThEccnUKOSfrZEx-p9KnJCDHsuTYjBybkYeyBsvsYPEhyk3Yp2548D_5zR_ymKXgspZQ1w3UMhpHvwHQDnmM</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Shalaby, M S</creator><creator>Elshahawy, Abdelnaby M</creator><creator>Yousif, N M</creator><creator>Agammy, E F El</creator><creator>Elmosalami, T A</creator><creator>Hasaneen, M F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6545-9523</orcidid><orcidid>https://orcid.org/0000-0001-7691-2039</orcidid></search><sort><creationdate>20220501</creationdate><title>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</title><author>Shalaby, M S ; Elshahawy, Abdelnaby M ; Yousif, N M ; Agammy, E F El ; Elmosalami, T A ; Hasaneen, M F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d6e49dbc0977767f60f9ba43c327fdd9d71edca5719f3d96d6c2176345b9a80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cu-doped and undoped CdO</topic><topic>DTA</topic><topic>energy gap</topic><topic>refractive</topic><topic>TEM</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shalaby, M S</creatorcontrib><creatorcontrib>Elshahawy, Abdelnaby M</creatorcontrib><creatorcontrib>Yousif, N M</creatorcontrib><creatorcontrib>Agammy, E F El</creatorcontrib><creatorcontrib>Elmosalami, T A</creatorcontrib><creatorcontrib>Hasaneen, M F</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalaby, M S</au><au>Elshahawy, Abdelnaby M</au><au>Yousif, N M</au><au>Agammy, E F El</au><au>Elmosalami, T A</au><au>Hasaneen, M F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>97</volume><issue>5</issue><spage>55805</spage><pages>55805-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The doped-CdO nanostructures with transition metals attract considerable interest due to their chemical and physical properties. That differs from those bulk materials, especially the variation of their optical bandgap, which makes them used in various applications. This communication focuses on the synthesis and characteristic properties of un-doped/doped Cd 1- x Cu x O nanocomposites produced by the co-precipitated technique. XRD patterns indicate the polycrystalline nature of the investigated samples whereas Cu atoms have been effectively diffused into the Cd sites. It is found that at lower concentrations of Cu (111) diffraction planes were mainly the preferential ones while at higher concentrations, the plane (200) appeared as a preferential one. The average particle size increases with the addition of Cu dopant. From TEM it is found that the average particle size ranges from ∼18 to 89 nm. SEM photographs show a formation of distinguished agglomerates. Also, EDX shows that the common elements (Cd, Cu, and O) were obtained without any impurities. The thermal stability increases with increasing Cu concentrations. The optical band gap ( E g ) decreases and Urbach energy ( E u ) increases, respectively, with increasing the content of Cu. As a result, the CdO doped Cu can be used to develop novel photovoltaic and light-emitting instruments.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ac6210</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6545-9523</orcidid><orcidid>https://orcid.org/0000-0001-7691-2039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2022-05, Vol.97 (5), p.55805
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ac6210
source Institute of Physics Journals
subjects Cu-doped and undoped CdO
DTA
energy gap
refractive
TEM
XRD
title The Co-precipitated preparation, characterization, and optical investigations of Cu-doped CdO nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Co-precipitated%20preparation,%20characterization,%20and%20optical%20investigations%20of%20Cu-doped%20CdO%20nanomaterials&rft.jtitle=Physica%20scripta&rft.au=Shalaby,%20M%20S&rft.date=2022-05-01&rft.volume=97&rft.issue=5&rft.spage=55805&rft.pages=55805-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ac6210&rft_dat=%3Ciop_cross%3Epsac6210%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true