Nonlinear Maxwell equations and strong-field electrodynamics
We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orde...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2022-03, Vol.97 (3), p.35303 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35303 |
container_title | Physica scripta |
container_volume | 97 |
creator | Bruce, S A |
description | We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orders in EM Lorentz invariants are considered. The second instance proposes an extension of the HE model. It consists of a NL Maxwell-Dirac spinor model where the EM field modifies the dynamics of the energy-momentum operator sector of the Dirac Lagrangian instead of its rest-mass term counterpart. This work complements our recent research on NL Dirac equations in the strong EM field regime. |
doi_str_mv | 10.1088/1402-4896/ac50c2 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ac50c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psac50c2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f5b3ca2ae05f999eddf5758c7e4587ac5c5b5d6250b51fe73bcd418cb6ad136d3</originalsourceid><addsrcrecordid>eNp1j0tLxDAUhYMoWEf3LvsDjHOTNm0CbmTwBaNudB3SPCRDJh2TDjr_3paKO1eHezjncj6ELglcE-B8SWqguOaiWSrNQNMjVPxZx6gAqAjmohan6CznDQBtaCMKdPPSx-CjVal8Vt9fNoTSfu7V4PuYSxVNmYfUxw_svA2mtMHq8TaHqLZe53N04lTI9uJXF-j9_u5t9YjXrw9Pq9s11pTDgB3rKq2ossCcEMIa41jLuG5tzXg7ztWsY6ahDDpGnG2rTpuacN01ypCqMdUCwfxXpz7nZJ3cJb9V6SAJyIleTqhyQpUz_Vi5miu-38lNv09xHPh__Ad_a1zR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Maxwell equations and strong-field electrodynamics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bruce, S A</creator><creatorcontrib>Bruce, S A</creatorcontrib><description>We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orders in EM Lorentz invariants are considered. The second instance proposes an extension of the HE model. It consists of a NL Maxwell-Dirac spinor model where the EM field modifies the dynamics of the energy-momentum operator sector of the Dirac Lagrangian instead of its rest-mass term counterpart. This work complements our recent research on NL Dirac equations in the strong EM field regime.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ac50c2</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>nonlinear electrodynamics ; nonlinear Maxwell equations ; strong-electromagnetic fields</subject><ispartof>Physica scripta, 2022-03, Vol.97 (3), p.35303</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f5b3ca2ae05f999eddf5758c7e4587ac5c5b5d6250b51fe73bcd418cb6ad136d3</citedby><cites>FETCH-LOGICAL-c280t-f5b3ca2ae05f999eddf5758c7e4587ac5c5b5d6250b51fe73bcd418cb6ad136d3</cites><orcidid>0000-0002-4554-7654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ac50c2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Bruce, S A</creatorcontrib><title>Nonlinear Maxwell equations and strong-field electrodynamics</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orders in EM Lorentz invariants are considered. The second instance proposes an extension of the HE model. It consists of a NL Maxwell-Dirac spinor model where the EM field modifies the dynamics of the energy-momentum operator sector of the Dirac Lagrangian instead of its rest-mass term counterpart. This work complements our recent research on NL Dirac equations in the strong EM field regime.</description><subject>nonlinear electrodynamics</subject><subject>nonlinear Maxwell equations</subject><subject>strong-electromagnetic fields</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxDAUhYMoWEf3LvsDjHOTNm0CbmTwBaNudB3SPCRDJh2TDjr_3paKO1eHezjncj6ELglcE-B8SWqguOaiWSrNQNMjVPxZx6gAqAjmohan6CznDQBtaCMKdPPSx-CjVal8Vt9fNoTSfu7V4PuYSxVNmYfUxw_svA2mtMHq8TaHqLZe53N04lTI9uJXF-j9_u5t9YjXrw9Pq9s11pTDgB3rKq2ossCcEMIa41jLuG5tzXg7ztWsY6ahDDpGnG2rTpuacN01ypCqMdUCwfxXpz7nZJ3cJb9V6SAJyIleTqhyQpUz_Vi5miu-38lNv09xHPh__Ad_a1zR</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bruce, S A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4554-7654</orcidid></search><sort><creationdate>20220301</creationdate><title>Nonlinear Maxwell equations and strong-field electrodynamics</title><author>Bruce, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f5b3ca2ae05f999eddf5758c7e4587ac5c5b5d6250b51fe73bcd418cb6ad136d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>nonlinear electrodynamics</topic><topic>nonlinear Maxwell equations</topic><topic>strong-electromagnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, S A</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Maxwell equations and strong-field electrodynamics</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>97</volume><issue>3</issue><spage>35303</spage><pages>35303-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orders in EM Lorentz invariants are considered. The second instance proposes an extension of the HE model. It consists of a NL Maxwell-Dirac spinor model where the EM field modifies the dynamics of the energy-momentum operator sector of the Dirac Lagrangian instead of its rest-mass term counterpart. This work complements our recent research on NL Dirac equations in the strong EM field regime.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ac50c2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4554-7654</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2022-03, Vol.97 (3), p.35303 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ac50c2 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | nonlinear electrodynamics nonlinear Maxwell equations strong-electromagnetic fields |
title | Nonlinear Maxwell equations and strong-field electrodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Maxwell%20equations%20and%20strong-field%20electrodynamics&rft.jtitle=Physica%20scripta&rft.au=Bruce,%20S%20A&rft.date=2022-03-01&rft.volume=97&rft.issue=3&rft.spage=35303&rft.pages=35303-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ac50c2&rft_dat=%3Ciop_cross%3Epsac50c2%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |