Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods
The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2021-12, Vol.96 (12), p.125408 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125408 |
container_title | Physica scripta |
container_volume | 96 |
creator | Omugbe, E Osafile, O E Inyang, E P Jahanshir, A |
description | The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic
N
-dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for
N
=
2
,
N
=
4
and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary
r
=
0
,
r
=
∞
.
Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied. |
doi_str_mv | 10.1088/1402-4896/ac38d4 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ac38d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psac38d4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</originalsourceid><addsrcrecordid>eNp1kEFPAyEQhYnRxFq9e-TmRSywlMLRqq2mTTyo8UjoMmu3aWEF9tB_7641njSZZCaT772ZPIQuGb1hVKkRE5QTobQc2bJQThyhwe_qGA0oLRhRWuhTdJbShlIuudQDlKeh9Q6nbDPgFLZtroNPOFQ4rwGv9w1EEq2r7RYvtlB7Mg_RBY_hs7U9ijs1xG_4HvwHmVmPm5DB516y2uP3xRTb7sJLP-wgr4NL5-ikstsEFz99iN5mD693j2T5PH-6u12SsmA8k9JJwWXp1FhKKNVEMqfAKQorLkE7Loui1HS8ElY7mGjLQSipCiq4dtWE2WKI6MG3jCGlCJVpYr2zcW8YNX1qpo_I9BGZQ2qd5OogqUNjNqGNvnvQNMl0CONdjQVVpnFVR17_Qf5r_AUWL3vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Omugbe, E ; Osafile, O E ; Inyang, E P ; Jahanshir, A</creator><creatorcontrib>Omugbe, E ; Osafile, O E ; Inyang, E P ; Jahanshir, A</creatorcontrib><description>The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic
N
-dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for
N
=
2
,
N
=
4
and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary
r
=
0
,
r
=
∞
.
Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ac38d4</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Deng-Fan potential ; Klein-Gordon equation ; SWKB method ; WKB approximation</subject><ispartof>Physica scripta, 2021-12, Vol.96 (12), p.125408</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</citedby><cites>FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</cites><orcidid>0000-0001-5154-7610 ; 0000-0003-1510-4235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ac38d4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Omugbe, E</creatorcontrib><creatorcontrib>Osafile, O E</creatorcontrib><creatorcontrib>Inyang, E P</creatorcontrib><creatorcontrib>Jahanshir, A</creatorcontrib><title>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic
N
-dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for
N
=
2
,
N
=
4
and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary
r
=
0
,
r
=
∞
.
Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.</description><subject>Deng-Fan potential</subject><subject>Klein-Gordon equation</subject><subject>SWKB method</subject><subject>WKB approximation</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAyEQhYnRxFq9e-TmRSywlMLRqq2mTTyo8UjoMmu3aWEF9tB_7641njSZZCaT772ZPIQuGb1hVKkRE5QTobQc2bJQThyhwe_qGA0oLRhRWuhTdJbShlIuudQDlKeh9Q6nbDPgFLZtroNPOFQ4rwGv9w1EEq2r7RYvtlB7Mg_RBY_hs7U9ijs1xG_4HvwHmVmPm5DB516y2uP3xRTb7sJLP-wgr4NL5-ikstsEFz99iN5mD693j2T5PH-6u12SsmA8k9JJwWXp1FhKKNVEMqfAKQorLkE7Loui1HS8ElY7mGjLQSipCiq4dtWE2WKI6MG3jCGlCJVpYr2zcW8YNX1qpo_I9BGZQ2qd5OogqUNjNqGNvnvQNMl0CONdjQVVpnFVR17_Qf5r_AUWL3vA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Omugbe, E</creator><creator>Osafile, O E</creator><creator>Inyang, E P</creator><creator>Jahanshir, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5154-7610</orcidid><orcidid>https://orcid.org/0000-0003-1510-4235</orcidid></search><sort><creationdate>20211201</creationdate><title>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</title><author>Omugbe, E ; Osafile, O E ; Inyang, E P ; Jahanshir, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deng-Fan potential</topic><topic>Klein-Gordon equation</topic><topic>SWKB method</topic><topic>WKB approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omugbe, E</creatorcontrib><creatorcontrib>Osafile, O E</creatorcontrib><creatorcontrib>Inyang, E P</creatorcontrib><creatorcontrib>Jahanshir, A</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omugbe, E</au><au>Osafile, O E</au><au>Inyang, E P</au><au>Jahanshir, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>96</volume><issue>12</issue><spage>125408</spage><pages>125408-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic
N
-dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for
N
=
2
,
N
=
4
and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary
r
=
0
,
r
=
∞
.
Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ac38d4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5154-7610</orcidid><orcidid>https://orcid.org/0000-0003-1510-4235</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2021-12, Vol.96 (12), p.125408 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ac38d4 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Deng-Fan potential Klein-Gordon equation SWKB method WKB approximation |
title | Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bound%20state%20solutions%20of%20the%20hyper-radial%20Klein-Gordon%20equation%20under%20the%20Deng-Fan%20potential%20by%20WKB%20and%20SWKB%20methods&rft.jtitle=Physica%20scripta&rft.au=Omugbe,%20E&rft.date=2021-12-01&rft.volume=96&rft.issue=12&rft.spage=125408&rft.pages=125408-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ac38d4&rft_dat=%3Ciop_cross%3Epsac38d4%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |