Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods

The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2021-12, Vol.96 (12), p.125408
Hauptverfasser: Omugbe, E, Osafile, O E, Inyang, E P, Jahanshir, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 125408
container_title Physica scripta
container_volume 96
creator Omugbe, E
Osafile, O E
Inyang, E P
Jahanshir, A
description The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic N -dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for N = 2 , N = 4 and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary r = 0 , r = ∞ . Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.
doi_str_mv 10.1088/1402-4896/ac38d4
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ac38d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psac38d4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</originalsourceid><addsrcrecordid>eNp1kEFPAyEQhYnRxFq9e-TmRSywlMLRqq2mTTyo8UjoMmu3aWEF9tB_7641njSZZCaT772ZPIQuGb1hVKkRE5QTobQc2bJQThyhwe_qGA0oLRhRWuhTdJbShlIuudQDlKeh9Q6nbDPgFLZtroNPOFQ4rwGv9w1EEq2r7RYvtlB7Mg_RBY_hs7U9ijs1xG_4HvwHmVmPm5DB516y2uP3xRTb7sJLP-wgr4NL5-ikstsEFz99iN5mD693j2T5PH-6u12SsmA8k9JJwWXp1FhKKNVEMqfAKQorLkE7Loui1HS8ElY7mGjLQSipCiq4dtWE2WKI6MG3jCGlCJVpYr2zcW8YNX1qpo_I9BGZQ2qd5OogqUNjNqGNvnvQNMl0CONdjQVVpnFVR17_Qf5r_AUWL3vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Omugbe, E ; Osafile, O E ; Inyang, E P ; Jahanshir, A</creator><creatorcontrib>Omugbe, E ; Osafile, O E ; Inyang, E P ; Jahanshir, A</creatorcontrib><description>The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic N -dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for N = 2 , N = 4 and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary r = 0 , r = ∞ . Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ac38d4</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Deng-Fan potential ; Klein-Gordon equation ; SWKB method ; WKB approximation</subject><ispartof>Physica scripta, 2021-12, Vol.96 (12), p.125408</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</citedby><cites>FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</cites><orcidid>0000-0001-5154-7610 ; 0000-0003-1510-4235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ac38d4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Omugbe, E</creatorcontrib><creatorcontrib>Osafile, O E</creatorcontrib><creatorcontrib>Inyang, E P</creatorcontrib><creatorcontrib>Jahanshir, A</creatorcontrib><title>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic N -dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for N = 2 , N = 4 and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary r = 0 , r = ∞ . Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.</description><subject>Deng-Fan potential</subject><subject>Klein-Gordon equation</subject><subject>SWKB method</subject><subject>WKB approximation</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAyEQhYnRxFq9e-TmRSywlMLRqq2mTTyo8UjoMmu3aWEF9tB_7641njSZZCaT772ZPIQuGb1hVKkRE5QTobQc2bJQThyhwe_qGA0oLRhRWuhTdJbShlIuudQDlKeh9Q6nbDPgFLZtroNPOFQ4rwGv9w1EEq2r7RYvtlB7Mg_RBY_hs7U9ijs1xG_4HvwHmVmPm5DB516y2uP3xRTb7sJLP-wgr4NL5-ikstsEFz99iN5mD693j2T5PH-6u12SsmA8k9JJwWXp1FhKKNVEMqfAKQorLkE7Loui1HS8ElY7mGjLQSipCiq4dtWE2WKI6MG3jCGlCJVpYr2zcW8YNX1qpo_I9BGZQ2qd5OogqUNjNqGNvnvQNMl0CONdjQVVpnFVR17_Qf5r_AUWL3vA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Omugbe, E</creator><creator>Osafile, O E</creator><creator>Inyang, E P</creator><creator>Jahanshir, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5154-7610</orcidid><orcidid>https://orcid.org/0000-0003-1510-4235</orcidid></search><sort><creationdate>20211201</creationdate><title>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</title><author>Omugbe, E ; Osafile, O E ; Inyang, E P ; Jahanshir, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-cd6426cd8566ec8761d8ed80eb26e9d2633c905b4a9de79a2e486830429df71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deng-Fan potential</topic><topic>Klein-Gordon equation</topic><topic>SWKB method</topic><topic>WKB approximation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omugbe, E</creatorcontrib><creatorcontrib>Osafile, O E</creatorcontrib><creatorcontrib>Inyang, E P</creatorcontrib><creatorcontrib>Jahanshir, A</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omugbe, E</au><au>Osafile, O E</au><au>Inyang, E P</au><au>Jahanshir, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>96</volume><issue>12</issue><spage>125408</spage><pages>125408-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The energy levels of the Klein–Gordon equation in hyper-radial space under the Deng-Fan potential energy function are studied by the SWKB and WKB approximation methods. We obtained the analytic solution of the energy spectra and the ground state wave function in closed form. Furthermore, we obtained the energy equation corresponding to the Schrodinger equation by invoking the non-relativistic limit. The variations of the non-relativistic N -dimensional energy spectra with the potential parameters and radial quantum number are investigated. The energy levels are degenerate for N = 2 , N = 4 and increase with the dimensionality number. The ground state wave function and its gradient are continuous at the boundary r = 0 , r = ∞ . Our results for the energy spectra are in excellent agreement with the ones obtained by other analytical methods where similar centrifugal approximations were applied.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ac38d4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5154-7610</orcidid><orcidid>https://orcid.org/0000-0003-1510-4235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2021-12, Vol.96 (12), p.125408
issn 0031-8949
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_ac38d4
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Deng-Fan potential
Klein-Gordon equation
SWKB method
WKB approximation
title Bound state solutions of the hyper-radial Klein-Gordon equation under the Deng-Fan potential by WKB and SWKB methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bound%20state%20solutions%20of%20the%20hyper-radial%20Klein-Gordon%20equation%20under%20the%20Deng-Fan%20potential%20by%20WKB%20and%20SWKB%20methods&rft.jtitle=Physica%20scripta&rft.au=Omugbe,%20E&rft.date=2021-12-01&rft.volume=96&rft.issue=12&rft.spage=125408&rft.pages=125408-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ac38d4&rft_dat=%3Ciop_cross%3Epsac38d4%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true