Plasma-wall interaction studies in W7-X: main results from the recent divertor operations
Wendelstein 7-X (W7-X) is an optimized stellarator with a 3-dimensional five-fold modular geometry. The plasma-wall-interaction (PWI) investigations in the complex 3D geometry of W7-X were carried out by in situ spectroscopic observations, exhaust gas analysis and post-mortem measurements on a large...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2021-12, Vol.96 (12), p.124059 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 124059 |
container_title | Physica scripta |
container_volume | 96 |
creator | Dhard, C P Brezinsek, S Mayer, M Naujoks, D Masuzaki, S Zhao, D Yi, R Oelmann, J Schmid, K Romazanov, J Pardanaud, C Kandler, M Kharwandikar, A K Schlisio, G Volzke, O Grote, H Gao, Y Rudischhauser, L Goriaev, A Wauters, T Kirschner, A Sereda, S Wang, E Rasinski, M Dittmar, T Motojima, G Hwangbo, D Kajita, S Balden, M Burwitz, V V Neu, R Linsmeier, Ch W7-X Team, the |
description | Wendelstein 7-X (W7-X) is an optimized stellarator with a 3-dimensional five-fold modular geometry. The plasma-wall-interaction (PWI) investigations in the complex 3D geometry of W7-X were carried out by
in situ
spectroscopic observations, exhaust gas analysis and post-mortem measurements on a large number of plasma-facing components extracted after campaigns. The investigations showed that the divertor strike line areas on the divertor targets appeared to be the major source of carbon impurities. After multistep erosion and deposition events, carbon was found to be deposited largely at the first wall components, with thick deposits of >1
μ
m on some baffle tiles, moderate deposits on toroidal closure tiles and thin deposits at the heat shield tiles and the outer wall panels. Some amount of the eroded carbon was pumped out via the vacuum pumps as volatile hydrocarbons and carbon oxides (CO, CO
2
) formed due to the chemical processes. Boron was introduced by three boronizations and one boron powder injection experiment. Thin boron-dominated layers were found on the inner heat shield and the outer wall panels, some boron was also found at the test divertor unit and in redeposited layers together with carbon. Local erosion/deposition and global migration processes were studied using field-line transport simulations, analytical estimations, 3D-WallDYN and ERO2.0 modeling in standard magnetic field configuration. |
doi_str_mv | 10.1088/1402-4896/ac35c0 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_ac35c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03665581v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-7495f1ff0ff34a15a282ecd3b075b5f92d1511cdba3bdde1c0b024546b5092db3</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYMoOKfvPvZNBOtuvrrWtzHUCQN9UNSnkKYJ62ibkmQT_3tTKnsS4UIuJ79z4B6ELjHcYsjzGWZAUpYX2UwqyhUcoclBOkYTAIrTvGDFKTrzfgtAMpIVE_T50kjfyvRLNk1Sd0E7qUJtu8SHXVVrH7XkfZ5-3CWtjKvTftcEnxhn2yRsdBSU7kJS1XvtgnWJ7WPCEODP0YmRjdcXv-8UvT3cvy5X6fr58Wm5WKeKcRbSOSu4wcaAMZRJzCXJiVYVLWHOS24KUmGOsapKScuq0lhBCSQ6s5JD_CzpFF2PuRvZiN7VrXTfwsparBZrMWhAs4zzHO9xZGFklbPeO20OBgxiqFEMnYmhMzHWGC03o6W2vdjaneviMf_hV3_gvRcRwSQOA16IvjL0B9ULgRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasma-wall interaction studies in W7-X: main results from the recent divertor operations</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Dhard, C P ; Brezinsek, S ; Mayer, M ; Naujoks, D ; Masuzaki, S ; Zhao, D ; Yi, R ; Oelmann, J ; Schmid, K ; Romazanov, J ; Pardanaud, C ; Kandler, M ; Kharwandikar, A K ; Schlisio, G ; Volzke, O ; Grote, H ; Gao, Y ; Rudischhauser, L ; Goriaev, A ; Wauters, T ; Kirschner, A ; Sereda, S ; Wang, E ; Rasinski, M ; Dittmar, T ; Motojima, G ; Hwangbo, D ; Kajita, S ; Balden, M ; Burwitz, V V ; Neu, R ; Linsmeier, Ch ; W7-X Team, the</creator><creatorcontrib>Dhard, C P ; Brezinsek, S ; Mayer, M ; Naujoks, D ; Masuzaki, S ; Zhao, D ; Yi, R ; Oelmann, J ; Schmid, K ; Romazanov, J ; Pardanaud, C ; Kandler, M ; Kharwandikar, A K ; Schlisio, G ; Volzke, O ; Grote, H ; Gao, Y ; Rudischhauser, L ; Goriaev, A ; Wauters, T ; Kirschner, A ; Sereda, S ; Wang, E ; Rasinski, M ; Dittmar, T ; Motojima, G ; Hwangbo, D ; Kajita, S ; Balden, M ; Burwitz, V V ; Neu, R ; Linsmeier, Ch ; W7-X Team, the</creatorcontrib><description>Wendelstein 7-X (W7-X) is an optimized stellarator with a 3-dimensional five-fold modular geometry. The plasma-wall-interaction (PWI) investigations in the complex 3D geometry of W7-X were carried out by
in situ
spectroscopic observations, exhaust gas analysis and post-mortem measurements on a large number of plasma-facing components extracted after campaigns. The investigations showed that the divertor strike line areas on the divertor targets appeared to be the major source of carbon impurities. After multistep erosion and deposition events, carbon was found to be deposited largely at the first wall components, with thick deposits of >1
μ
m on some baffle tiles, moderate deposits on toroidal closure tiles and thin deposits at the heat shield tiles and the outer wall panels. Some amount of the eroded carbon was pumped out via the vacuum pumps as volatile hydrocarbons and carbon oxides (CO, CO
2
) formed due to the chemical processes. Boron was introduced by three boronizations and one boron powder injection experiment. Thin boron-dominated layers were found on the inner heat shield and the outer wall panels, some boron was also found at the test divertor unit and in redeposited layers together with carbon. Local erosion/deposition and global migration processes were studied using field-line transport simulations, analytical estimations, 3D-WallDYN and ERO2.0 modeling in standard magnetic field configuration.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/ac35c0</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>erosion and deposition ; graphite ; Physics ; Plasma Physics ; plasma-facing components ; plasma-wall interaction ; wendelstein 7-X</subject><ispartof>Physica scripta, 2021-12, Vol.96 (12), p.124059</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-7495f1ff0ff34a15a282ecd3b075b5f92d1511cdba3bdde1c0b024546b5092db3</citedby><cites>FETCH-LOGICAL-c454t-7495f1ff0ff34a15a282ecd3b075b5f92d1511cdba3bdde1c0b024546b5092db3</cites><orcidid>0000-0003-0161-0938 ; 0000-0002-2599-182X ; 0000-0001-5522-3082 ; 0000-0002-5430-0645 ; 0000-0002-8755-9370 ; 0000-0003-0180-6279 ; 0000-0002-4325-7979 ; 0000-0001-8576-0970 ; 0000-0003-0387-4961 ; 0000-0001-8974-4396 ; 0000-0002-8637-2248 ; 0000-0003-0404-7191 ; 0000-0002-6062-1955 ; 0000-0002-5337-6963 ; 0000-0001-9439-786X ; 0000-0002-0845-4571 ; 0000-0002-7213-3326 ; 0000-0001-6277-4421 ; 0000-0002-3213-3225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/ac35c0/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03665581$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhard, C P</creatorcontrib><creatorcontrib>Brezinsek, S</creatorcontrib><creatorcontrib>Mayer, M</creatorcontrib><creatorcontrib>Naujoks, D</creatorcontrib><creatorcontrib>Masuzaki, S</creatorcontrib><creatorcontrib>Zhao, D</creatorcontrib><creatorcontrib>Yi, R</creatorcontrib><creatorcontrib>Oelmann, J</creatorcontrib><creatorcontrib>Schmid, K</creatorcontrib><creatorcontrib>Romazanov, J</creatorcontrib><creatorcontrib>Pardanaud, C</creatorcontrib><creatorcontrib>Kandler, M</creatorcontrib><creatorcontrib>Kharwandikar, A K</creatorcontrib><creatorcontrib>Schlisio, G</creatorcontrib><creatorcontrib>Volzke, O</creatorcontrib><creatorcontrib>Grote, H</creatorcontrib><creatorcontrib>Gao, Y</creatorcontrib><creatorcontrib>Rudischhauser, L</creatorcontrib><creatorcontrib>Goriaev, A</creatorcontrib><creatorcontrib>Wauters, T</creatorcontrib><creatorcontrib>Kirschner, A</creatorcontrib><creatorcontrib>Sereda, S</creatorcontrib><creatorcontrib>Wang, E</creatorcontrib><creatorcontrib>Rasinski, M</creatorcontrib><creatorcontrib>Dittmar, T</creatorcontrib><creatorcontrib>Motojima, G</creatorcontrib><creatorcontrib>Hwangbo, D</creatorcontrib><creatorcontrib>Kajita, S</creatorcontrib><creatorcontrib>Balden, M</creatorcontrib><creatorcontrib>Burwitz, V V</creatorcontrib><creatorcontrib>Neu, R</creatorcontrib><creatorcontrib>Linsmeier, Ch</creatorcontrib><creatorcontrib>W7-X Team, the</creatorcontrib><title>Plasma-wall interaction studies in W7-X: main results from the recent divertor operations</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>Wendelstein 7-X (W7-X) is an optimized stellarator with a 3-dimensional five-fold modular geometry. The plasma-wall-interaction (PWI) investigations in the complex 3D geometry of W7-X were carried out by
in situ
spectroscopic observations, exhaust gas analysis and post-mortem measurements on a large number of plasma-facing components extracted after campaigns. The investigations showed that the divertor strike line areas on the divertor targets appeared to be the major source of carbon impurities. After multistep erosion and deposition events, carbon was found to be deposited largely at the first wall components, with thick deposits of >1
μ
m on some baffle tiles, moderate deposits on toroidal closure tiles and thin deposits at the heat shield tiles and the outer wall panels. Some amount of the eroded carbon was pumped out via the vacuum pumps as volatile hydrocarbons and carbon oxides (CO, CO
2
) formed due to the chemical processes. Boron was introduced by three boronizations and one boron powder injection experiment. Thin boron-dominated layers were found on the inner heat shield and the outer wall panels, some boron was also found at the test divertor unit and in redeposited layers together with carbon. Local erosion/deposition and global migration processes were studied using field-line transport simulations, analytical estimations, 3D-WallDYN and ERO2.0 modeling in standard magnetic field configuration.</description><subject>erosion and deposition</subject><subject>graphite</subject><subject>Physics</subject><subject>Plasma Physics</subject><subject>plasma-facing components</subject><subject>plasma-wall interaction</subject><subject>wendelstein 7-X</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kN1LwzAUxYMoOKfvPvZNBOtuvrrWtzHUCQN9UNSnkKYJ62ibkmQT_3tTKnsS4UIuJ79z4B6ELjHcYsjzGWZAUpYX2UwqyhUcoclBOkYTAIrTvGDFKTrzfgtAMpIVE_T50kjfyvRLNk1Sd0E7qUJtu8SHXVVrH7XkfZ5-3CWtjKvTftcEnxhn2yRsdBSU7kJS1XvtgnWJ7WPCEODP0YmRjdcXv-8UvT3cvy5X6fr58Wm5WKeKcRbSOSu4wcaAMZRJzCXJiVYVLWHOS24KUmGOsapKScuq0lhBCSQ6s5JD_CzpFF2PuRvZiN7VrXTfwsparBZrMWhAs4zzHO9xZGFklbPeO20OBgxiqFEMnYmhMzHWGC03o6W2vdjaneviMf_hV3_gvRcRwSQOA16IvjL0B9ULgRY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Dhard, C P</creator><creator>Brezinsek, S</creator><creator>Mayer, M</creator><creator>Naujoks, D</creator><creator>Masuzaki, S</creator><creator>Zhao, D</creator><creator>Yi, R</creator><creator>Oelmann, J</creator><creator>Schmid, K</creator><creator>Romazanov, J</creator><creator>Pardanaud, C</creator><creator>Kandler, M</creator><creator>Kharwandikar, A K</creator><creator>Schlisio, G</creator><creator>Volzke, O</creator><creator>Grote, H</creator><creator>Gao, Y</creator><creator>Rudischhauser, L</creator><creator>Goriaev, A</creator><creator>Wauters, T</creator><creator>Kirschner, A</creator><creator>Sereda, S</creator><creator>Wang, E</creator><creator>Rasinski, M</creator><creator>Dittmar, T</creator><creator>Motojima, G</creator><creator>Hwangbo, D</creator><creator>Kajita, S</creator><creator>Balden, M</creator><creator>Burwitz, V V</creator><creator>Neu, R</creator><creator>Linsmeier, Ch</creator><creator>W7-X Team, the</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0161-0938</orcidid><orcidid>https://orcid.org/0000-0002-2599-182X</orcidid><orcidid>https://orcid.org/0000-0001-5522-3082</orcidid><orcidid>https://orcid.org/0000-0002-5430-0645</orcidid><orcidid>https://orcid.org/0000-0002-8755-9370</orcidid><orcidid>https://orcid.org/0000-0003-0180-6279</orcidid><orcidid>https://orcid.org/0000-0002-4325-7979</orcidid><orcidid>https://orcid.org/0000-0001-8576-0970</orcidid><orcidid>https://orcid.org/0000-0003-0387-4961</orcidid><orcidid>https://orcid.org/0000-0001-8974-4396</orcidid><orcidid>https://orcid.org/0000-0002-8637-2248</orcidid><orcidid>https://orcid.org/0000-0003-0404-7191</orcidid><orcidid>https://orcid.org/0000-0002-6062-1955</orcidid><orcidid>https://orcid.org/0000-0002-5337-6963</orcidid><orcidid>https://orcid.org/0000-0001-9439-786X</orcidid><orcidid>https://orcid.org/0000-0002-0845-4571</orcidid><orcidid>https://orcid.org/0000-0002-7213-3326</orcidid><orcidid>https://orcid.org/0000-0001-6277-4421</orcidid><orcidid>https://orcid.org/0000-0002-3213-3225</orcidid></search><sort><creationdate>20211201</creationdate><title>Plasma-wall interaction studies in W7-X: main results from the recent divertor operations</title><author>Dhard, C P ; Brezinsek, S ; Mayer, M ; Naujoks, D ; Masuzaki, S ; Zhao, D ; Yi, R ; Oelmann, J ; Schmid, K ; Romazanov, J ; Pardanaud, C ; Kandler, M ; Kharwandikar, A K ; Schlisio, G ; Volzke, O ; Grote, H ; Gao, Y ; Rudischhauser, L ; Goriaev, A ; Wauters, T ; Kirschner, A ; Sereda, S ; Wang, E ; Rasinski, M ; Dittmar, T ; Motojima, G ; Hwangbo, D ; Kajita, S ; Balden, M ; Burwitz, V V ; Neu, R ; Linsmeier, Ch ; W7-X Team, the</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-7495f1ff0ff34a15a282ecd3b075b5f92d1511cdba3bdde1c0b024546b5092db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>erosion and deposition</topic><topic>graphite</topic><topic>Physics</topic><topic>Plasma Physics</topic><topic>plasma-facing components</topic><topic>plasma-wall interaction</topic><topic>wendelstein 7-X</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhard, C P</creatorcontrib><creatorcontrib>Brezinsek, S</creatorcontrib><creatorcontrib>Mayer, M</creatorcontrib><creatorcontrib>Naujoks, D</creatorcontrib><creatorcontrib>Masuzaki, S</creatorcontrib><creatorcontrib>Zhao, D</creatorcontrib><creatorcontrib>Yi, R</creatorcontrib><creatorcontrib>Oelmann, J</creatorcontrib><creatorcontrib>Schmid, K</creatorcontrib><creatorcontrib>Romazanov, J</creatorcontrib><creatorcontrib>Pardanaud, C</creatorcontrib><creatorcontrib>Kandler, M</creatorcontrib><creatorcontrib>Kharwandikar, A K</creatorcontrib><creatorcontrib>Schlisio, G</creatorcontrib><creatorcontrib>Volzke, O</creatorcontrib><creatorcontrib>Grote, H</creatorcontrib><creatorcontrib>Gao, Y</creatorcontrib><creatorcontrib>Rudischhauser, L</creatorcontrib><creatorcontrib>Goriaev, A</creatorcontrib><creatorcontrib>Wauters, T</creatorcontrib><creatorcontrib>Kirschner, A</creatorcontrib><creatorcontrib>Sereda, S</creatorcontrib><creatorcontrib>Wang, E</creatorcontrib><creatorcontrib>Rasinski, M</creatorcontrib><creatorcontrib>Dittmar, T</creatorcontrib><creatorcontrib>Motojima, G</creatorcontrib><creatorcontrib>Hwangbo, D</creatorcontrib><creatorcontrib>Kajita, S</creatorcontrib><creatorcontrib>Balden, M</creatorcontrib><creatorcontrib>Burwitz, V V</creatorcontrib><creatorcontrib>Neu, R</creatorcontrib><creatorcontrib>Linsmeier, Ch</creatorcontrib><creatorcontrib>W7-X Team, the</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhard, C P</au><au>Brezinsek, S</au><au>Mayer, M</au><au>Naujoks, D</au><au>Masuzaki, S</au><au>Zhao, D</au><au>Yi, R</au><au>Oelmann, J</au><au>Schmid, K</au><au>Romazanov, J</au><au>Pardanaud, C</au><au>Kandler, M</au><au>Kharwandikar, A K</au><au>Schlisio, G</au><au>Volzke, O</au><au>Grote, H</au><au>Gao, Y</au><au>Rudischhauser, L</au><au>Goriaev, A</au><au>Wauters, T</au><au>Kirschner, A</au><au>Sereda, S</au><au>Wang, E</au><au>Rasinski, M</au><au>Dittmar, T</au><au>Motojima, G</au><au>Hwangbo, D</au><au>Kajita, S</au><au>Balden, M</au><au>Burwitz, V V</au><au>Neu, R</au><au>Linsmeier, Ch</au><au>W7-X Team, the</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-wall interaction studies in W7-X: main results from the recent divertor operations</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>96</volume><issue>12</issue><spage>124059</spage><pages>124059-</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>Wendelstein 7-X (W7-X) is an optimized stellarator with a 3-dimensional five-fold modular geometry. The plasma-wall-interaction (PWI) investigations in the complex 3D geometry of W7-X were carried out by
in situ
spectroscopic observations, exhaust gas analysis and post-mortem measurements on a large number of plasma-facing components extracted after campaigns. The investigations showed that the divertor strike line areas on the divertor targets appeared to be the major source of carbon impurities. After multistep erosion and deposition events, carbon was found to be deposited largely at the first wall components, with thick deposits of >1
μ
m on some baffle tiles, moderate deposits on toroidal closure tiles and thin deposits at the heat shield tiles and the outer wall panels. Some amount of the eroded carbon was pumped out via the vacuum pumps as volatile hydrocarbons and carbon oxides (CO, CO
2
) formed due to the chemical processes. Boron was introduced by three boronizations and one boron powder injection experiment. Thin boron-dominated layers were found on the inner heat shield and the outer wall panels, some boron was also found at the test divertor unit and in redeposited layers together with carbon. Local erosion/deposition and global migration processes were studied using field-line transport simulations, analytical estimations, 3D-WallDYN and ERO2.0 modeling in standard magnetic field configuration.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/ac35c0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0161-0938</orcidid><orcidid>https://orcid.org/0000-0002-2599-182X</orcidid><orcidid>https://orcid.org/0000-0001-5522-3082</orcidid><orcidid>https://orcid.org/0000-0002-5430-0645</orcidid><orcidid>https://orcid.org/0000-0002-8755-9370</orcidid><orcidid>https://orcid.org/0000-0003-0180-6279</orcidid><orcidid>https://orcid.org/0000-0002-4325-7979</orcidid><orcidid>https://orcid.org/0000-0001-8576-0970</orcidid><orcidid>https://orcid.org/0000-0003-0387-4961</orcidid><orcidid>https://orcid.org/0000-0001-8974-4396</orcidid><orcidid>https://orcid.org/0000-0002-8637-2248</orcidid><orcidid>https://orcid.org/0000-0003-0404-7191</orcidid><orcidid>https://orcid.org/0000-0002-6062-1955</orcidid><orcidid>https://orcid.org/0000-0002-5337-6963</orcidid><orcidid>https://orcid.org/0000-0001-9439-786X</orcidid><orcidid>https://orcid.org/0000-0002-0845-4571</orcidid><orcidid>https://orcid.org/0000-0002-7213-3326</orcidid><orcidid>https://orcid.org/0000-0001-6277-4421</orcidid><orcidid>https://orcid.org/0000-0002-3213-3225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2021-12, Vol.96 (12), p.124059 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_ac35c0 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | erosion and deposition graphite Physics Plasma Physics plasma-facing components plasma-wall interaction wendelstein 7-X |
title | Plasma-wall interaction studies in W7-X: main results from the recent divertor operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-wall%20interaction%20studies%20in%20W7-X:%20main%20results%20from%20the%20recent%20divertor%20operations&rft.jtitle=Physica%20scripta&rft.au=Dhard,%20C%20P&rft.date=2021-12-01&rft.volume=96&rft.issue=12&rft.spage=124059&rft.pages=124059-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/ac35c0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03665581v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |