Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation
The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues...
Gespeichert in:
Veröffentlicht in: | Physica scripta 2020-10, Vol.95 (10), p.105210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 105210 |
container_title | Physica scripta |
container_volume | 95 |
creator | Jia, Man Chen, Zitong |
description | The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes. |
doi_str_mv | 10.1088/1402-4896/abb636 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_abb636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psabb636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYHWHeSdNPkKMUvXPCiXkPSJNil26xJevDfm7KyePE08LzzDsOD0DWBWwJCrEgNtKqF5CttDGf8BC2O6BQtABiphKzlObpIaQtAOeVygXwbPl10Y8Ypx6nLU3QJ-xCxiU7nElUpDH0OI96FwXXTUGI92mP8BwePCynA9r53Fr_YD-y-Jp37MF6iM6-H5K5-5xK9P9y_tU_V5vXxub3bVB0VkCvJGsI7YywlrumIoFaaumauPM_1uvbUCMq9l1qDpRTWwKjwljXUNJw2DWFLBIe7XQwpRefVPvY7Hb8VATV7UrMUNUtRB0-lcnOo9GGvtmGKY3nw__UfNLNqvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jia, Man ; Chen, Zitong</creator><creatorcontrib>Jia, Man ; Chen, Zitong</creatorcontrib><description>The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.</description><identifier>ISSN: 0031-8949</identifier><identifier>ISSN: 1402-4896</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/abb636</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>breather molecules ; breather-soliton molecules ; mKdV equation ; nonelastic interaction ; novel multi-soliton solution</subject><ispartof>Physica scripta, 2020-10, Vol.95 (10), p.105210</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</citedby><cites>FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</cites><orcidid>0000-0002-0766-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/abb636/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Jia, Man</creatorcontrib><creatorcontrib>Chen, Zitong</creatorcontrib><title>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.</description><subject>breather molecules</subject><subject>breather-soliton molecules</subject><subject>mKdV equation</subject><subject>nonelastic interaction</subject><subject>novel multi-soliton solution</subject><issn>0031-8949</issn><issn>1402-4896</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYHWHeSdNPkKMUvXPCiXkPSJNil26xJevDfm7KyePE08LzzDsOD0DWBWwJCrEgNtKqF5CttDGf8BC2O6BQtABiphKzlObpIaQtAOeVygXwbPl10Y8Ypx6nLU3QJ-xCxiU7nElUpDH0OI96FwXXTUGI92mP8BwePCynA9r53Fr_YD-y-Jp37MF6iM6-H5K5-5xK9P9y_tU_V5vXxub3bVB0VkCvJGsI7YywlrumIoFaaumauPM_1uvbUCMq9l1qDpRTWwKjwljXUNJw2DWFLBIe7XQwpRefVPvY7Hb8VATV7UrMUNUtRB0-lcnOo9GGvtmGKY3nw__UfNLNqvQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jia, Man</creator><creator>Chen, Zitong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0766-2408</orcidid></search><sort><creationdate>20201001</creationdate><title>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</title><author>Jia, Man ; Chen, Zitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>breather molecules</topic><topic>breather-soliton molecules</topic><topic>mKdV equation</topic><topic>nonelastic interaction</topic><topic>novel multi-soliton solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Man</creatorcontrib><creatorcontrib>Chen, Zitong</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Man</au><au>Chen, Zitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>95</volume><issue>10</issue><spage>105210</spage><pages>105210-</pages><issn>0031-8949</issn><issn>1402-4896</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/abb636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0766-2408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2020-10, Vol.95 (10), p.105210 |
issn | 0031-8949 1402-4896 1402-4896 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1402_4896_abb636 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | breather molecules breather-soliton molecules mKdV equation nonelastic interaction novel multi-soliton solution |
title | Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20structures%20for%20breather-soliton%20molecules%20and%20breather%20molecules%20of%20the%20modified%20KdV%20equation&rft.jtitle=Physica%20scripta&rft.au=Jia,%20Man&rft.date=2020-10-01&rft.volume=95&rft.issue=10&rft.spage=105210&rft.pages=105210-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/abb636&rft_dat=%3Ciop_cross%3Epsabb636%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |