Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation

The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica scripta 2020-10, Vol.95 (10), p.105210
Hauptverfasser: Jia, Man, Chen, Zitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105210
container_title Physica scripta
container_volume 95
creator Jia, Man
Chen, Zitong
description The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.
doi_str_mv 10.1088/1402-4896/abb636
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1402_4896_abb636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>psabb636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYHWHeSdNPkKMUvXPCiXkPSJNil26xJevDfm7KyePE08LzzDsOD0DWBWwJCrEgNtKqF5CttDGf8BC2O6BQtABiphKzlObpIaQtAOeVygXwbPl10Y8Ypx6nLU3QJ-xCxiU7nElUpDH0OI96FwXXTUGI92mP8BwePCynA9r53Fr_YD-y-Jp37MF6iM6-H5K5-5xK9P9y_tU_V5vXxub3bVB0VkCvJGsI7YywlrumIoFaaumauPM_1uvbUCMq9l1qDpRTWwKjwljXUNJw2DWFLBIe7XQwpRefVPvY7Hb8VATV7UrMUNUtRB0-lcnOo9GGvtmGKY3nw__UfNLNqvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jia, Man ; Chen, Zitong</creator><creatorcontrib>Jia, Man ; Chen, Zitong</creatorcontrib><description>The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.</description><identifier>ISSN: 0031-8949</identifier><identifier>ISSN: 1402-4896</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/1402-4896/abb636</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>breather molecules ; breather-soliton molecules ; mKdV equation ; nonelastic interaction ; novel multi-soliton solution</subject><ispartof>Physica scripta, 2020-10, Vol.95 (10), p.105210</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</citedby><cites>FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</cites><orcidid>0000-0002-0766-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1402-4896/abb636/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Jia, Man</creatorcontrib><creatorcontrib>Chen, Zitong</creatorcontrib><title>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.</description><subject>breather molecules</subject><subject>breather-soliton molecules</subject><subject>mKdV equation</subject><subject>nonelastic interaction</subject><subject>novel multi-soliton solution</subject><issn>0031-8949</issn><issn>1402-4896</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYHWHeSdNPkKMUvXPCiXkPSJNil26xJevDfm7KyePE08LzzDsOD0DWBWwJCrEgNtKqF5CttDGf8BC2O6BQtABiphKzlObpIaQtAOeVygXwbPl10Y8Ypx6nLU3QJ-xCxiU7nElUpDH0OI96FwXXTUGI92mP8BwePCynA9r53Fr_YD-y-Jp37MF6iM6-H5K5-5xK9P9y_tU_V5vXxub3bVB0VkCvJGsI7YywlrumIoFaaumauPM_1uvbUCMq9l1qDpRTWwKjwljXUNJw2DWFLBIe7XQwpRefVPvY7Hb8VATV7UrMUNUtRB0-lcnOo9GGvtmGKY3nw__UfNLNqvQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jia, Man</creator><creator>Chen, Zitong</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0766-2408</orcidid></search><sort><creationdate>20201001</creationdate><title>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</title><author>Jia, Man ; Chen, Zitong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-93716cbbd21e7c182d9b443e0316a54f2b826ff9aa0d22050328fd372b7627713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>breather molecules</topic><topic>breather-soliton molecules</topic><topic>mKdV equation</topic><topic>nonelastic interaction</topic><topic>novel multi-soliton solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Man</creatorcontrib><creatorcontrib>Chen, Zitong</creatorcontrib><collection>CrossRef</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Man</au><au>Chen, Zitong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>95</volume><issue>10</issue><spage>105210</spage><pages>105210-</pages><issn>0031-8949</issn><issn>1402-4896</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>The real modified Korteweg-de Vries equation governs the modulation of weakly nonlinear waves. We first review the multiple soliton solutions to the mKdV equation by means of the inverse scattering method in detail. It is found the soliton solutions are related to pure imaginary discrete eigenvalues, while the breathers are derived from complex eigenvalues. A novel expression for the mulitple soliton solution is presented which is used to construct the soliton and breather solutions. By introducing resonance condition for solitons and breathers, some resonant structures for breathers and solitons, or soliton bound states are first constructed for the real mKdV equation, such as breather molecules, breather-soliton molecules. Our work demonstrates the interactions among breather molecules and breather-soliton molecules are nonelastic by the meaning the breathers and solitons change their sizes.</abstract><pub>IOP Publishing</pub><doi>10.1088/1402-4896/abb636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0766-2408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2020-10, Vol.95 (10), p.105210
issn 0031-8949
1402-4896
1402-4896
language eng
recordid cdi_crossref_primary_10_1088_1402_4896_abb636
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects breather molecules
breather-soliton molecules
mKdV equation
nonelastic interaction
novel multi-soliton solution
title Coherent structures for breather-soliton molecules and breather molecules of the modified KdV equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20structures%20for%20breather-soliton%20molecules%20and%20breather%20molecules%20of%20the%20modified%20KdV%20equation&rft.jtitle=Physica%20scripta&rft.au=Jia,%20Man&rft.date=2020-10-01&rft.volume=95&rft.issue=10&rft.spage=105210&rft.pages=105210-&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/1402-4896/abb636&rft_dat=%3Ciop_cross%3Epsabb636%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true