Bubble nucleation in a cold spin 1 gas

Cold atomic gases offer the prospect of simulating the physics of the very early Universe in the laboratory. In the condensate phase, the gas is described by a field theory with key features of high energy particle theory. This paper describes a three level system which undergoes a first order phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2023-04, Vol.25 (4), p.43028
Hauptverfasser: Billam, Thomas P, Brown, Kate, Moss, Ian G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 43028
container_title New journal of physics
container_volume 25
creator Billam, Thomas P
Brown, Kate
Moss, Ian G
description Cold atomic gases offer the prospect of simulating the physics of the very early Universe in the laboratory. In the condensate phase, the gas is described by a field theory with key features of high energy particle theory. This paper describes a three level system which undergoes a first order phase transition through the nucleation of bubbles. The theoretical investigation shows bubbles nucleating in two dimensions at non-zero temperature. There is good agreement between the bubble nucleation rates calculated from a stochastic projected Gross–Pitaevskii equation and from a non-perturbative instanton method. When an optical box trap is included in the simulations, the bubbles nucleate preferentially near the walls of the trap.
doi_str_mv 10.1088/1367-2630/accca2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_accca2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b45ba68a421348b2b7f2428c7e108c5b</doaj_id><sourcerecordid>2808656254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b3aab4de9b12167fdb17d5dee75f05b7a6d5409e1185e70363679b804274be33</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw5xgJiROhtuNXj1DxqFSJS-_W-pEqVYiDnRz497gEFS6cdrWamR19CF0TfE-wUgtSCVlSUeEFWGuBnqDZ8XT6Zz9HFyntMSZEUTpDt4-jMa0vutG2HoYmdEXTFVDY0Loi9XknxQ7SJTqroU3-6mfO0fb5abt6LTdvL-vVw6a0jIihNBWAYc4vDaFEyNoZIh133kteY24kCMcZXvr8nHuJK5FbLY3CjEpmfFXN0XqKdQH2uo_NO8RPHaDR34cQdxri0OSq2jBuQChglFRMGWpkTRlVVvqMw3KTs26mrD6Gj9GnQe_DGLvcXlOFleCCcpZVeFLZGFKKvj5-JVgfwOoDOX0gpyew2XI3WZrQ_2b-K_8CWGF2qQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808656254</pqid></control><display><type>article</type><title>Bubble nucleation in a cold spin 1 gas</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Billam, Thomas P ; Brown, Kate ; Moss, Ian G</creator><creatorcontrib>Billam, Thomas P ; Brown, Kate ; Moss, Ian G</creatorcontrib><description>Cold atomic gases offer the prospect of simulating the physics of the very early Universe in the laboratory. In the condensate phase, the gas is described by a field theory with key features of high energy particle theory. This paper describes a three level system which undergoes a first order phase transition through the nucleation of bubbles. The theoretical investigation shows bubbles nucleating in two dimensions at non-zero temperature. There is good agreement between the bubble nucleation rates calculated from a stochastic projected Gross–Pitaevskii equation and from a non-perturbative instanton method. When an optical box trap is included in the simulations, the bubbles nucleate preferentially near the walls of the trap.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/accca2</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Approximation ; Bubbles ; Cold ; cold atoms ; condensed matter physics ; cosmology ; Field theory ; Gases ; Gravitational waves ; high energy physics ; Instantons ; Magnetic fields ; Nucleation ; Particle theory ; Phase transitions ; Physics ; quantum gases ; Simulation ; stochastic ; Temperature ; vacuum decay</subject><ispartof>New journal of physics, 2023-04, Vol.25 (4), p.43028</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b3aab4de9b12167fdb17d5dee75f05b7a6d5409e1185e70363679b804274be33</citedby><cites>FETCH-LOGICAL-c416t-b3aab4de9b12167fdb17d5dee75f05b7a6d5409e1185e70363679b804274be33</cites><orcidid>0000-0003-2456-6204 ; 0000-0003-0155-9394 ; 0000-0002-2070-7199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/accca2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Billam, Thomas P</creatorcontrib><creatorcontrib>Brown, Kate</creatorcontrib><creatorcontrib>Moss, Ian G</creatorcontrib><title>Bubble nucleation in a cold spin 1 gas</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Cold atomic gases offer the prospect of simulating the physics of the very early Universe in the laboratory. In the condensate phase, the gas is described by a field theory with key features of high energy particle theory. This paper describes a three level system which undergoes a first order phase transition through the nucleation of bubbles. The theoretical investigation shows bubbles nucleating in two dimensions at non-zero temperature. There is good agreement between the bubble nucleation rates calculated from a stochastic projected Gross–Pitaevskii equation and from a non-perturbative instanton method. When an optical box trap is included in the simulations, the bubbles nucleate preferentially near the walls of the trap.</description><subject>Approximation</subject><subject>Bubbles</subject><subject>Cold</subject><subject>cold atoms</subject><subject>condensed matter physics</subject><subject>cosmology</subject><subject>Field theory</subject><subject>Gases</subject><subject>Gravitational waves</subject><subject>high energy physics</subject><subject>Instantons</subject><subject>Magnetic fields</subject><subject>Nucleation</subject><subject>Particle theory</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>quantum gases</subject><subject>Simulation</subject><subject>stochastic</subject><subject>Temperature</subject><subject>vacuum decay</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kEtPwzAQhC0EEqVw5xgJiROhtuNXj1DxqFSJS-_W-pEqVYiDnRz497gEFS6cdrWamR19CF0TfE-wUgtSCVlSUeEFWGuBnqDZ8XT6Zz9HFyntMSZEUTpDt4-jMa0vutG2HoYmdEXTFVDY0Loi9XknxQ7SJTqroU3-6mfO0fb5abt6LTdvL-vVw6a0jIihNBWAYc4vDaFEyNoZIh133kteY24kCMcZXvr8nHuJK5FbLY3CjEpmfFXN0XqKdQH2uo_NO8RPHaDR34cQdxri0OSq2jBuQChglFRMGWpkTRlVVvqMw3KTs26mrD6Gj9GnQe_DGLvcXlOFleCCcpZVeFLZGFKKvj5-JVgfwOoDOX0gpyew2XI3WZrQ_2b-K_8CWGF2qQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Billam, Thomas P</creator><creator>Brown, Kate</creator><creator>Moss, Ian G</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2456-6204</orcidid><orcidid>https://orcid.org/0000-0003-0155-9394</orcidid><orcidid>https://orcid.org/0000-0002-2070-7199</orcidid></search><sort><creationdate>20230401</creationdate><title>Bubble nucleation in a cold spin 1 gas</title><author>Billam, Thomas P ; Brown, Kate ; Moss, Ian G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b3aab4de9b12167fdb17d5dee75f05b7a6d5409e1185e70363679b804274be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Bubbles</topic><topic>Cold</topic><topic>cold atoms</topic><topic>condensed matter physics</topic><topic>cosmology</topic><topic>Field theory</topic><topic>Gases</topic><topic>Gravitational waves</topic><topic>high energy physics</topic><topic>Instantons</topic><topic>Magnetic fields</topic><topic>Nucleation</topic><topic>Particle theory</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>quantum gases</topic><topic>Simulation</topic><topic>stochastic</topic><topic>Temperature</topic><topic>vacuum decay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billam, Thomas P</creatorcontrib><creatorcontrib>Brown, Kate</creatorcontrib><creatorcontrib>Moss, Ian G</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billam, Thomas P</au><au>Brown, Kate</au><au>Moss, Ian G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble nucleation in a cold spin 1 gas</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>25</volume><issue>4</issue><spage>43028</spage><pages>43028-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Cold atomic gases offer the prospect of simulating the physics of the very early Universe in the laboratory. In the condensate phase, the gas is described by a field theory with key features of high energy particle theory. This paper describes a three level system which undergoes a first order phase transition through the nucleation of bubbles. The theoretical investigation shows bubbles nucleating in two dimensions at non-zero temperature. There is good agreement between the bubble nucleation rates calculated from a stochastic projected Gross–Pitaevskii equation and from a non-perturbative instanton method. When an optical box trap is included in the simulations, the bubbles nucleate preferentially near the walls of the trap.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/accca2</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2456-6204</orcidid><orcidid>https://orcid.org/0000-0003-0155-9394</orcidid><orcidid>https://orcid.org/0000-0002-2070-7199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2023-04, Vol.25 (4), p.43028
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_accca2
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Approximation
Bubbles
Cold
cold atoms
condensed matter physics
cosmology
Field theory
Gases
Gravitational waves
high energy physics
Instantons
Magnetic fields
Nucleation
Particle theory
Phase transitions
Physics
quantum gases
Simulation
stochastic
Temperature
vacuum decay
title Bubble nucleation in a cold spin 1 gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20nucleation%20in%20a%20cold%20spin%201%20gas&rft.jtitle=New%20journal%20of%20physics&rft.au=Billam,%20Thomas%20P&rft.date=2023-04-01&rft.volume=25&rft.issue=4&rft.spage=43028&rft.pages=43028-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/accca2&rft_dat=%3Cproquest_cross%3E2808656254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808656254&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b45ba68a421348b2b7f2428c7e108c5b&rfr_iscdi=true