Quantum synchronisation enabled by dynamical symmetries and dissipation
In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying condition...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2020-01, Vol.22 (1), p.13026 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 13026 |
container_title | New journal of physics |
container_volume | 22 |
creator | Tindall, J Sánchez Muñoz, C Bu a, B Jaksch, D |
description | In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking. |
doi_str_mv | 10.1088/1367-2630/ab60f5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab60f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20d89677885c44d6a8b2854917282cb1</doaj_id><sourcerecordid>2342482004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7ePRa8um6Spkl6lEXXBUEEPYc0STVLm9SkPfTfm25l9eJphuF7bx4PgGsE7xDkfI1yylaY5nAtKwrr4gQsjqfTP_s5uIhxDyFCHOMF2L4O0vVDm8XRqc_gnY2yt95lxsmqMTqrxkyPTrZWySZBbWv6YE3MpNOZtjHa7sBfgrNaNtFc_cwleH98eNs8rZ5ftrvN_fNKEUT7VVmWvMKQccyY1EUlU6wa5oqpOkeYcEwoqxDTiBJVcoQhYkXaakwYLEol8yXYzb7ay73ogm1lGIWXVhwOPnwIGXqrGiMw1LykjHFeKEI0lekzL0iJGOZYVSh53cxeXfBfg4m92PshuBRf4JxMaSAkiYIzpYKPMZj6-BVBMVUvpm7F1K2Yq0-S21lifffr-S_-DbZJgl4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342482004</pqid></control><display><type>article</type><title>Quantum synchronisation enabled by dynamical symmetries and dissipation</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tindall, J ; Sánchez Muñoz, C ; Bu a, B ; Jaksch, D</creator><creatorcontrib>Tindall, J ; Sánchez Muñoz, C ; Bu a, B ; Jaksch, D</creatorcontrib><description>In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab60f5</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Broken symmetry ; Frequency locking ; Long range order ; Nonlinear systems ; open quantum systems ; Parameter identification ; Physics ; Quantum entanglement ; quantum lattice models ; quantum synchronisation ; Quantum theory ; strongly interacting ; symmetries ; Symmetry ; Synchronism</subject><ispartof>New journal of physics, 2020-01, Vol.22 (1), p.13026</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</citedby><cites>FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</cites><orcidid>0000-0003-1335-8637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab60f5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Tindall, J</creatorcontrib><creatorcontrib>Sánchez Muñoz, C</creatorcontrib><creatorcontrib>Bu a, B</creatorcontrib><creatorcontrib>Jaksch, D</creatorcontrib><title>Quantum synchronisation enabled by dynamical symmetries and dissipation</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.</description><subject>Broken symmetry</subject><subject>Frequency locking</subject><subject>Long range order</subject><subject>Nonlinear systems</subject><subject>open quantum systems</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>quantum lattice models</subject><subject>quantum synchronisation</subject><subject>Quantum theory</subject><subject>strongly interacting</subject><subject>symmetries</subject><subject>Symmetry</subject><subject>Synchronism</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kEFLxDAQhYMouK7ePRa8um6Spkl6lEXXBUEEPYc0STVLm9SkPfTfm25l9eJphuF7bx4PgGsE7xDkfI1yylaY5nAtKwrr4gQsjqfTP_s5uIhxDyFCHOMF2L4O0vVDm8XRqc_gnY2yt95lxsmqMTqrxkyPTrZWySZBbWv6YE3MpNOZtjHa7sBfgrNaNtFc_cwleH98eNs8rZ5ftrvN_fNKEUT7VVmWvMKQccyY1EUlU6wa5oqpOkeYcEwoqxDTiBJVcoQhYkXaakwYLEol8yXYzb7ay73ogm1lGIWXVhwOPnwIGXqrGiMw1LykjHFeKEI0lekzL0iJGOZYVSh53cxeXfBfg4m92PshuBRf4JxMaSAkiYIzpYKPMZj6-BVBMVUvpm7F1K2Yq0-S21lifffr-S_-DbZJgl4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tindall, J</creator><creator>Sánchez Muñoz, C</creator><creator>Bu a, B</creator><creator>Jaksch, D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1335-8637</orcidid></search><sort><creationdate>20200101</creationdate><title>Quantum synchronisation enabled by dynamical symmetries and dissipation</title><author>Tindall, J ; Sánchez Muñoz, C ; Bu a, B ; Jaksch, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broken symmetry</topic><topic>Frequency locking</topic><topic>Long range order</topic><topic>Nonlinear systems</topic><topic>open quantum systems</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>quantum lattice models</topic><topic>quantum synchronisation</topic><topic>Quantum theory</topic><topic>strongly interacting</topic><topic>symmetries</topic><topic>Symmetry</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tindall, J</creatorcontrib><creatorcontrib>Sánchez Muñoz, C</creatorcontrib><creatorcontrib>Bu a, B</creatorcontrib><creatorcontrib>Jaksch, D</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tindall, J</au><au>Sánchez Muñoz, C</au><au>Bu a, B</au><au>Jaksch, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum synchronisation enabled by dynamical symmetries and dissipation</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>13026</spage><pages>13026-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab60f5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1335-8637</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2020-01, Vol.22 (1), p.13026 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_ab60f5 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Broken symmetry Frequency locking Long range order Nonlinear systems open quantum systems Parameter identification Physics Quantum entanglement quantum lattice models quantum synchronisation Quantum theory strongly interacting symmetries Symmetry Synchronism |
title | Quantum synchronisation enabled by dynamical symmetries and dissipation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20synchronisation%20enabled%20by%20dynamical%20symmetries%20and%20dissipation&rft.jtitle=New%20journal%20of%20physics&rft.au=Tindall,%20J&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=13026&rft.pages=13026-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab60f5&rft_dat=%3Cproquest_cross%3E2342482004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342482004&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_20d89677885c44d6a8b2854917282cb1&rfr_iscdi=true |