Quantum synchronisation enabled by dynamical symmetries and dissipation

In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-01, Vol.22 (1), p.13026
Hauptverfasser: Tindall, J, Sánchez Muñoz, C, Bu a, B, Jaksch, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 13026
container_title New journal of physics
container_volume 22
creator Tindall, J
Sánchez Muñoz, C
Bu a, B
Jaksch, D
description In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.
doi_str_mv 10.1088/1367-2630/ab60f5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab60f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_20d89677885c44d6a8b2854917282cb1</doaj_id><sourcerecordid>2342482004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7ePRa8um6Spkl6lEXXBUEEPYc0STVLm9SkPfTfm25l9eJphuF7bx4PgGsE7xDkfI1yylaY5nAtKwrr4gQsjqfTP_s5uIhxDyFCHOMF2L4O0vVDm8XRqc_gnY2yt95lxsmqMTqrxkyPTrZWySZBbWv6YE3MpNOZtjHa7sBfgrNaNtFc_cwleH98eNs8rZ5ftrvN_fNKEUT7VVmWvMKQccyY1EUlU6wa5oqpOkeYcEwoqxDTiBJVcoQhYkXaakwYLEol8yXYzb7ay73ogm1lGIWXVhwOPnwIGXqrGiMw1LykjHFeKEI0lekzL0iJGOZYVSh53cxeXfBfg4m92PshuBRf4JxMaSAkiYIzpYKPMZj6-BVBMVUvpm7F1K2Yq0-S21lifffr-S_-DbZJgl4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342482004</pqid></control><display><type>article</type><title>Quantum synchronisation enabled by dynamical symmetries and dissipation</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tindall, J ; Sánchez Muñoz, C ; Bu a, B ; Jaksch, D</creator><creatorcontrib>Tindall, J ; Sánchez Muñoz, C ; Bu a, B ; Jaksch, D</creatorcontrib><description>In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab60f5</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Broken symmetry ; Frequency locking ; Long range order ; Nonlinear systems ; open quantum systems ; Parameter identification ; Physics ; Quantum entanglement ; quantum lattice models ; quantum synchronisation ; Quantum theory ; strongly interacting ; symmetries ; Symmetry ; Synchronism</subject><ispartof>New journal of physics, 2020-01, Vol.22 (1), p.13026</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</citedby><cites>FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</cites><orcidid>0000-0003-1335-8637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab60f5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Tindall, J</creatorcontrib><creatorcontrib>Sánchez Muñoz, C</creatorcontrib><creatorcontrib>Bu a, B</creatorcontrib><creatorcontrib>Jaksch, D</creatorcontrib><title>Quantum synchronisation enabled by dynamical symmetries and dissipation</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.</description><subject>Broken symmetry</subject><subject>Frequency locking</subject><subject>Long range order</subject><subject>Nonlinear systems</subject><subject>open quantum systems</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Quantum entanglement</subject><subject>quantum lattice models</subject><subject>quantum synchronisation</subject><subject>Quantum theory</subject><subject>strongly interacting</subject><subject>symmetries</subject><subject>Symmetry</subject><subject>Synchronism</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kEFLxDAQhYMouK7ePRa8um6Spkl6lEXXBUEEPYc0STVLm9SkPfTfm25l9eJphuF7bx4PgGsE7xDkfI1yylaY5nAtKwrr4gQsjqfTP_s5uIhxDyFCHOMF2L4O0vVDm8XRqc_gnY2yt95lxsmqMTqrxkyPTrZWySZBbWv6YE3MpNOZtjHa7sBfgrNaNtFc_cwleH98eNs8rZ5ftrvN_fNKEUT7VVmWvMKQccyY1EUlU6wa5oqpOkeYcEwoqxDTiBJVcoQhYkXaakwYLEol8yXYzb7ay73ogm1lGIWXVhwOPnwIGXqrGiMw1LykjHFeKEI0lekzL0iJGOZYVSh53cxeXfBfg4m92PshuBRf4JxMaSAkiYIzpYKPMZj6-BVBMVUvpm7F1K2Yq0-S21lifffr-S_-DbZJgl4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tindall, J</creator><creator>Sánchez Muñoz, C</creator><creator>Bu a, B</creator><creator>Jaksch, D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1335-8637</orcidid></search><sort><creationdate>20200101</creationdate><title>Quantum synchronisation enabled by dynamical symmetries and dissipation</title><author>Tindall, J ; Sánchez Muñoz, C ; Bu a, B ; Jaksch, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9998b2078277ad5ba367f03c7cf312482467b17d164c981201754c9f247059ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Broken symmetry</topic><topic>Frequency locking</topic><topic>Long range order</topic><topic>Nonlinear systems</topic><topic>open quantum systems</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Quantum entanglement</topic><topic>quantum lattice models</topic><topic>quantum synchronisation</topic><topic>Quantum theory</topic><topic>strongly interacting</topic><topic>symmetries</topic><topic>Symmetry</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tindall, J</creatorcontrib><creatorcontrib>Sánchez Muñoz, C</creatorcontrib><creatorcontrib>Bu a, B</creatorcontrib><creatorcontrib>Jaksch, D</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tindall, J</au><au>Sánchez Muñoz, C</au><au>Bu a, B</au><au>Jaksch, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum synchronisation enabled by dynamical symmetries and dissipation</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>13026</spage><pages>13026-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying conditions which, when satisfied, guarantee that the individual constituents of a generic open quantum system will undergo completely synchronous limit cycles which are, to first order, robust to symmetry-breaking perturbations. We then describe how these conditions can be satisfied by the interplay between several elements: interactions, local dephasing and the presence of a strong dynamical symmetry-an operator which guarantees long-time non-stationary dynamics. These elements cause the formation of entanglement and off-diagonal long-range order which drive the synchronised response of the system. To illustrate these ideas we present two central examples: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their nonlinear responses elicit long-lived signatures of both phase and frequency-locking.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab60f5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1335-8637</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-01, Vol.22 (1), p.13026
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_ab60f5
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Broken symmetry
Frequency locking
Long range order
Nonlinear systems
open quantum systems
Parameter identification
Physics
Quantum entanglement
quantum lattice models
quantum synchronisation
Quantum theory
strongly interacting
symmetries
Symmetry
Synchronism
title Quantum synchronisation enabled by dynamical symmetries and dissipation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20synchronisation%20enabled%20by%20dynamical%20symmetries%20and%20dissipation&rft.jtitle=New%20journal%20of%20physics&rft.au=Tindall,%20J&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=13026&rft.pages=13026-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab60f5&rft_dat=%3Cproquest_cross%3E2342482004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342482004&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_20d89677885c44d6a8b2854917282cb1&rfr_iscdi=true