Single trajectory characterization via machine learning

In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-01, Vol.22 (1), p.13010
Hauptverfasser: Muñoz-Gil, Gorka, Garcia-March, Miguel Angel, Manzo, Carlo, Martín-Guerrero, José D, Lewenstein, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 13010
container_title New journal of physics
container_volume 22
creator Muñoz-Gil, Gorka
Garcia-March, Miguel Angel
Manzo, Carlo
Martín-Guerrero, José D
Lewenstein, Maciej
description In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brief recordings or previous trajectory segmentation) and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate single trajectories to the underlying diffusion mechanism with high accuracy. In addition, the algorithm is able to determine the anomalous exponent with a small error, thus inherently providing a classification of the motion as normal or anomalous (sub- or super-diffusion). The method provides highly accurate outputs even when working with very short trajectories and in the presence of experimental noise. We further demonstrate the application of transfer learning to experimental and simulated data not included in the training/test dataset. This allows for a full, high-accuracy characterization of experimental trajectories without the need of any prior information.
doi_str_mv 10.1088/1367-2630/ab6065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab6065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_25f9071799eb4ee5960cd94ba6a99511</doaj_id><sourcerecordid>2337304327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-5ab35719e0a9d3b08f056f41787dfa1528d0ac92771523adb3e4841f16b6da013</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM0ZiYCFwthM7HlHFR6VKDMBsXRynddTGwUmRyl9PQlBhgOlOp_d-d_cIOadwTSHLbigXMmaCww3mAkR6QCb70eGv_pictG0FQGnG2ITIZ1cv1zbqAlbWdD7sIrPCgKazwX1g53wdvTuMNmhWrrbR2mKoe8spOSpx3dqz7zolr_d3L7PHePH0MJ_dLmKTJFkXp5jzVFJlAVXBc8hKSEWZUJnJokSasqwANIpJ2fcci5zbJEtoSUUuCgTKp2Q-cguPlW6C22DYaY9Ofw18WGoMnTNrq1laKpBUKmXzxNpUCTCFSnIUqFRKB9bFyGqCf9vattOV34a6P18zziWHhDPZq2BUmeDbNthyv5WCHqLWQ5Z6yFKPUfeWy9HifPPDrKtGM6ap7t-A3tsUZa-8-kP5L_gTOGyKHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337304327</pqid></control><display><type>article</type><title>Single trajectory characterization via machine learning</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Muñoz-Gil, Gorka ; Garcia-March, Miguel Angel ; Manzo, Carlo ; Martín-Guerrero, José D ; Lewenstein, Maciej</creator><creatorcontrib>Muñoz-Gil, Gorka ; Garcia-March, Miguel Angel ; Manzo, Carlo ; Martín-Guerrero, José D ; Lewenstein, Maciej</creatorcontrib><description>In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brief recordings or previous trajectory segmentation) and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate single trajectories to the underlying diffusion mechanism with high accuracy. In addition, the algorithm is able to determine the anomalous exponent with a small error, thus inherently providing a classification of the motion as normal or anomalous (sub- or super-diffusion). The method provides highly accurate outputs even when working with very short trajectories and in the presence of experimental noise. We further demonstrate the application of transfer learning to experimental and simulated data not included in the training/test dataset. This allows for a full, high-accuracy characterization of experimental trajectories without the need of any prior information.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab6065</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; anomalous diffusion ; biophysics ; Computer simulation ; Diffusion ; Machine learning ; Physics ; Segmentation ; statistical physics</subject><ispartof>New journal of physics, 2020-01, Vol.22 (1), p.13010</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-5ab35719e0a9d3b08f056f41787dfa1528d0ac92771523adb3e4841f16b6da013</citedby><cites>FETCH-LOGICAL-c448t-5ab35719e0a9d3b08f056f41787dfa1528d0ac92771523adb3e4841f16b6da013</cites><orcidid>0000-0002-8625-0996 ; 0000-0001-9223-0660 ; 0000-0001-9378-0285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab6065/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,861,2096,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Muñoz-Gil, Gorka</creatorcontrib><creatorcontrib>Garcia-March, Miguel Angel</creatorcontrib><creatorcontrib>Manzo, Carlo</creatorcontrib><creatorcontrib>Martín-Guerrero, José D</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><title>Single trajectory characterization via machine learning</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brief recordings or previous trajectory segmentation) and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate single trajectories to the underlying diffusion mechanism with high accuracy. In addition, the algorithm is able to determine the anomalous exponent with a small error, thus inherently providing a classification of the motion as normal or anomalous (sub- or super-diffusion). The method provides highly accurate outputs even when working with very short trajectories and in the presence of experimental noise. We further demonstrate the application of transfer learning to experimental and simulated data not included in the training/test dataset. This allows for a full, high-accuracy characterization of experimental trajectories without the need of any prior information.</description><subject>Algorithms</subject><subject>anomalous diffusion</subject><subject>biophysics</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Machine learning</subject><subject>Physics</subject><subject>Segmentation</subject><subject>statistical physics</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PwzAQxS0EEqWwM0ZiYCFwthM7HlHFR6VKDMBsXRynddTGwUmRyl9PQlBhgOlOp_d-d_cIOadwTSHLbigXMmaCww3mAkR6QCb70eGv_pictG0FQGnG2ITIZ1cv1zbqAlbWdD7sIrPCgKazwX1g53wdvTuMNmhWrrbR2mKoe8spOSpx3dqz7zolr_d3L7PHePH0MJ_dLmKTJFkXp5jzVFJlAVXBc8hKSEWZUJnJokSasqwANIpJ2fcci5zbJEtoSUUuCgTKp2Q-cguPlW6C22DYaY9Ofw18WGoMnTNrq1laKpBUKmXzxNpUCTCFSnIUqFRKB9bFyGqCf9vattOV34a6P18zziWHhDPZq2BUmeDbNthyv5WCHqLWQ5Z6yFKPUfeWy9HifPPDrKtGM6ap7t-A3tsUZa-8-kP5L_gTOGyKHw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Muñoz-Gil, Gorka</creator><creator>Garcia-March, Miguel Angel</creator><creator>Manzo, Carlo</creator><creator>Martín-Guerrero, José D</creator><creator>Lewenstein, Maciej</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8625-0996</orcidid><orcidid>https://orcid.org/0000-0001-9223-0660</orcidid><orcidid>https://orcid.org/0000-0001-9378-0285</orcidid></search><sort><creationdate>20200101</creationdate><title>Single trajectory characterization via machine learning</title><author>Muñoz-Gil, Gorka ; Garcia-March, Miguel Angel ; Manzo, Carlo ; Martín-Guerrero, José D ; Lewenstein, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-5ab35719e0a9d3b08f056f41787dfa1528d0ac92771523adb3e4841f16b6da013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>anomalous diffusion</topic><topic>biophysics</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Machine learning</topic><topic>Physics</topic><topic>Segmentation</topic><topic>statistical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz-Gil, Gorka</creatorcontrib><creatorcontrib>Garcia-March, Miguel Angel</creatorcontrib><creatorcontrib>Manzo, Carlo</creatorcontrib><creatorcontrib>Martín-Guerrero, José D</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz-Gil, Gorka</au><au>Garcia-March, Miguel Angel</au><au>Manzo, Carlo</au><au>Martín-Guerrero, José D</au><au>Lewenstein, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single trajectory characterization via machine learning</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>13010</spage><pages>13010-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brief recordings or previous trajectory segmentation) and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate single trajectories to the underlying diffusion mechanism with high accuracy. In addition, the algorithm is able to determine the anomalous exponent with a small error, thus inherently providing a classification of the motion as normal or anomalous (sub- or super-diffusion). The method provides highly accurate outputs even when working with very short trajectories and in the presence of experimental noise. We further demonstrate the application of transfer learning to experimental and simulated data not included in the training/test dataset. This allows for a full, high-accuracy characterization of experimental trajectories without the need of any prior information.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab6065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8625-0996</orcidid><orcidid>https://orcid.org/0000-0001-9223-0660</orcidid><orcidid>https://orcid.org/0000-0001-9378-0285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-01, Vol.22 (1), p.13010
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_ab6065
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
anomalous diffusion
biophysics
Computer simulation
Diffusion
Machine learning
Physics
Segmentation
statistical physics
title Single trajectory characterization via machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20trajectory%20characterization%20via%20machine%20learning&rft.jtitle=New%20journal%20of%20physics&rft.au=Mu%C3%B1oz-Gil,%20Gorka&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=13010&rft.pages=13010-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab6065&rft_dat=%3Cproquest_cross%3E2337304327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337304327&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_25f9071799eb4ee5960cd94ba6a99511&rfr_iscdi=true