Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids

We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schrödinger equation. The non-commutating variables in the phase-space produce a precession and an accelerati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2019-12, Vol.21 (12), p.123038
Hauptverfasser: Marcucci, Giulia, Conti, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 123038
container_title New journal of physics
container_volume 21
creator Marcucci, Giulia
Conti, Claudio
description We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schrödinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton's theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub-Planckian phenomenology.
doi_str_mv 10.1088/1367-2630/ab5da8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab5da8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8cb52cc30fee416091cd0210bf7555ba</doaj_id><sourcerecordid>2327517854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-ef782e73042411c3957269005e623284ab832f59c8a3639b954e703867fdac993</originalsourceid><addsrcrecordid>eNp9UU1LxDAQLaLgunr3WPDiwWo-miY5ivgFggf14ClM02TJ0jY1bcX996ZWVg8iBCa8ee_N8CZJjjE6x0iIC0wLnpGCogsoWQViJ1lsod1f__3koO_XCGEsCFkkr0-uGWsYXLtKV6Y1Aeo0mAl4d8MmhbZKW99m2jfNOEyoiTTfmCFs0nLz1esgwIeLurcR2mFsUluPruoPkz0LdW-Ovusyebm5fr66yx4eb--vLh8ynedyyIzlghhOUU5yjDWVjJNCIsRMQSgROZSCEsukFkALKkvJcsMRFQW3FWgp6TK5n30rD2vVBddA2CgPTn0BPqwUhMHp2iihS0a0psgak-MCSawrRDAqLWeMlRC9TmavLvi30fSDWvsxtHF9FZfhDHPB8shCM0sH3_fB2O1UjNR0DDWlraa01XyMKDmbJc53P57_0E__oLfrThGsMImPxghUV1n6CX_ImCw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327517854</pqid></control><display><type>article</type><title>Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids</title><source>Institute of Physics IOPscience extra</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Marcucci, Giulia ; Conti, Claudio</creator><creatorcontrib>Marcucci, Giulia ; Conti, Claudio</creatorcontrib><description>We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schrödinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton's theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub-Planckian phenomenology.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab5da8</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acceleration ; analog gravity ; Analogs ; Mercury (planet) ; nonlinear optics ; Perihelions ; Phenomenology ; Physics ; Precession ; quantum simulation ; Relativism ; Relativistic effects ; Relativity ; Schrodinger equation ; spatial solitons ; Theory of relativity</subject><ispartof>New journal of physics, 2019-12, Vol.21 (12), p.123038</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-ef782e73042411c3957269005e623284ab832f59c8a3639b954e703867fdac993</citedby><cites>FETCH-LOGICAL-c449t-ef782e73042411c3957269005e623284ab832f59c8a3639b954e703867fdac993</cites><orcidid>0000-0001-7166-3643 ; 0000-0003-2583-3415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab5da8/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Marcucci, Giulia</creatorcontrib><creatorcontrib>Conti, Claudio</creatorcontrib><title>Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schrödinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton's theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub-Planckian phenomenology.</description><subject>Acceleration</subject><subject>analog gravity</subject><subject>Analogs</subject><subject>Mercury (planet)</subject><subject>nonlinear optics</subject><subject>Perihelions</subject><subject>Phenomenology</subject><subject>Physics</subject><subject>Precession</subject><subject>quantum simulation</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativity</subject><subject>Schrodinger equation</subject><subject>spatial solitons</subject><subject>Theory of relativity</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LxDAQLaLgunr3WPDiwWo-miY5ivgFggf14ClM02TJ0jY1bcX996ZWVg8iBCa8ee_N8CZJjjE6x0iIC0wLnpGCogsoWQViJ1lsod1f__3koO_XCGEsCFkkr0-uGWsYXLtKV6Y1Aeo0mAl4d8MmhbZKW99m2jfNOEyoiTTfmCFs0nLz1esgwIeLurcR2mFsUluPruoPkz0LdW-Ovusyebm5fr66yx4eb--vLh8ynedyyIzlghhOUU5yjDWVjJNCIsRMQSgROZSCEsukFkALKkvJcsMRFQW3FWgp6TK5n30rD2vVBddA2CgPTn0BPqwUhMHp2iihS0a0psgak-MCSawrRDAqLWeMlRC9TmavLvi30fSDWvsxtHF9FZfhDHPB8shCM0sH3_fB2O1UjNR0DDWlraa01XyMKDmbJc53P57_0E__oLfrThGsMImPxghUV1n6CX_ImCw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Marcucci, Giulia</creator><creator>Conti, Claudio</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7166-3643</orcidid><orcidid>https://orcid.org/0000-0003-2583-3415</orcidid></search><sort><creationdate>20191201</creationdate><title>Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids</title><author>Marcucci, Giulia ; Conti, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-ef782e73042411c3957269005e623284ab832f59c8a3639b954e703867fdac993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>analog gravity</topic><topic>Analogs</topic><topic>Mercury (planet)</topic><topic>nonlinear optics</topic><topic>Perihelions</topic><topic>Phenomenology</topic><topic>Physics</topic><topic>Precession</topic><topic>quantum simulation</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativity</topic><topic>Schrodinger equation</topic><topic>spatial solitons</topic><topic>Theory of relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcucci, Giulia</creatorcontrib><creatorcontrib>Conti, Claudio</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcucci, Giulia</au><au>Conti, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>21</volume><issue>12</issue><spage>123038</spage><pages>123038-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schrödinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton's theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub-Planckian phenomenology.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab5da8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7166-3643</orcidid><orcidid>https://orcid.org/0000-0003-2583-3415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2019-12, Vol.21 (12), p.123038
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_ab5da8
source Institute of Physics IOPscience extra; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acceleration
analog gravity
Analogs
Mercury (planet)
nonlinear optics
Perihelions
Phenomenology
Physics
Precession
quantum simulation
Relativism
Relativistic effects
Relativity
Schrodinger equation
spatial solitons
Theory of relativity
title Simulating general relativity and non-commutative geometry by non-paraxial quantum fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20general%20relativity%20and%20non-commutative%20geometry%20by%20non-paraxial%20quantum%20fluids&rft.jtitle=New%20journal%20of%20physics&rft.au=Marcucci,%20Giulia&rft.date=2019-12-01&rft.volume=21&rft.issue=12&rft.spage=123038&rft.pages=123038-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab5da8&rft_dat=%3Cproquest_cross%3E2327517854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327517854&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8cb52cc30fee416091cd0210bf7555ba&rfr_iscdi=true