Handling leakage with subsystem codes

Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2019-07, Vol.21 (7), p.73055
Hauptverfasser: Brown, Natalie C, Newman, Michael, Brown, Kenneth R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 73055
container_title New journal of physics
container_volume 21
creator Brown, Natalie C
Newman, Michael
Brown, Kenneth R
description Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate different local codes in the low-error regime of a leakage gate error model. When restricting to bare-ancilla extraction, we observe that subsystem codes are good candidates for handling leakage, as their locality can limit damaging correlated errors. As a case study, we compare subspace surface codes to the subsystem surface codes introduced by Bravyi et al. In contrast to depolarizing noise, subsystem surface codes outperform same-distance subspace surface codes below error rates as high as ⪅ 7.5 × 10−4 while offering better per-qubit distance protection. Furthermore, we show that at low to intermediate distances, Bacon-Shor codes offer better per-qubit error protection against leakage in an ion-trap motivated error model below error rates as high as ⪅ 1.2 × 10−3. For restricted leakage models, this advantage can be extended to higher distances by relaxing to unverified two-qubit cat state extraction in the surface code. These results highlight an intrinsic benefit of subsystem code locality to error-corrective performance.
doi_str_mv 10.1088/1367-2630/ab3372
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab3372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b2a1db685584de08a3a75179202522e</doaj_id><sourcerecordid>2312368003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-d699b6cff6d995cbf47f4e5788e7077ca4d7e0654dc57e587d7d0493a3f284493</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb3LgMiboyd90yWUnwUCm50PUzmURPTTJxJkf57UyPVhbi6h8s5370cAM4RvEFQyhkiXOSYEzjTJSECH4DJfnX4Sx-Dk5RqCBGSGE_A5aNubVO1q6xx-k2vXPZR9a9Z2pRpm3q3zkywLp2CI6-b5M6-5xS83N89zx_z5dPDYn67zA2lss8tL4qSG--5LQpmSk-Fp44JKZ2AQhhNrXCQM2oNE45JYYWFtCCaeCzpIKZgMXJt0LXqYrXWcauCrtTXIsSV0rGvTOMULbFGtuSSMUmtg1ITLRgSBYaYYewG1sXI6mJ437jUqzpsYju8rzBBmHAJIRlccHSZGFKKzu-vIqh2xapdc2rXnBqLHSLXY6QK3Q_zH_vVH_a27hRGSigoCGRMddaTTxlxgxc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312368003</pqid></control><display><type>article</type><title>Handling leakage with subsystem codes</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brown, Natalie C ; Newman, Michael ; Brown, Kenneth R</creator><creatorcontrib>Brown, Natalie C ; Newman, Michael ; Brown, Kenneth R</creatorcontrib><description>Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate different local codes in the low-error regime of a leakage gate error model. When restricting to bare-ancilla extraction, we observe that subsystem codes are good candidates for handling leakage, as their locality can limit damaging correlated errors. As a case study, we compare subspace surface codes to the subsystem surface codes introduced by Bravyi et al. In contrast to depolarizing noise, subsystem surface codes outperform same-distance subspace surface codes below error rates as high as ⪅ 7.5 × 10−4 while offering better per-qubit distance protection. Furthermore, we show that at low to intermediate distances, Bacon-Shor codes offer better per-qubit error protection against leakage in an ion-trap motivated error model below error rates as high as ⪅ 1.2 × 10−3. For restricted leakage models, this advantage can be extended to higher distances by relaxing to unverified two-qubit cat state extraction in the surface code. These results highlight an intrinsic benefit of subsystem code locality to error-corrective performance.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab3372</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Correlation analysis ; Depolarization ; Error analysis ; Error correction ; Leakage ; Physics ; quantum computing ; quantum error-correction ; stabilizer subsystem codes ; Subspaces ; Subsystems</subject><ispartof>New journal of physics, 2019-07, Vol.21 (7), p.73055</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-d699b6cff6d995cbf47f4e5788e7077ca4d7e0654dc57e587d7d0493a3f284493</citedby><cites>FETCH-LOGICAL-c448t-d699b6cff6d995cbf47f4e5788e7077ca4d7e0654dc57e587d7d0493a3f284493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab3372/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Brown, Natalie C</creatorcontrib><creatorcontrib>Newman, Michael</creatorcontrib><creatorcontrib>Brown, Kenneth R</creatorcontrib><title>Handling leakage with subsystem codes</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate different local codes in the low-error regime of a leakage gate error model. When restricting to bare-ancilla extraction, we observe that subsystem codes are good candidates for handling leakage, as their locality can limit damaging correlated errors. As a case study, we compare subspace surface codes to the subsystem surface codes introduced by Bravyi et al. In contrast to depolarizing noise, subsystem surface codes outperform same-distance subspace surface codes below error rates as high as ⪅ 7.5 × 10−4 while offering better per-qubit distance protection. Furthermore, we show that at low to intermediate distances, Bacon-Shor codes offer better per-qubit error protection against leakage in an ion-trap motivated error model below error rates as high as ⪅ 1.2 × 10−3. For restricted leakage models, this advantage can be extended to higher distances by relaxing to unverified two-qubit cat state extraction in the surface code. These results highlight an intrinsic benefit of subsystem code locality to error-corrective performance.</description><subject>Correlation analysis</subject><subject>Depolarization</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Leakage</subject><subject>Physics</subject><subject>quantum computing</subject><subject>quantum error-correction</subject><subject>stabilizer subsystem codes</subject><subject>Subspaces</subject><subject>Subsystems</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEtLw0AUhQdRsFb3LgMiboyd90yWUnwUCm50PUzmURPTTJxJkf57UyPVhbi6h8s5370cAM4RvEFQyhkiXOSYEzjTJSECH4DJfnX4Sx-Dk5RqCBGSGE_A5aNubVO1q6xx-k2vXPZR9a9Z2pRpm3q3zkywLp2CI6-b5M6-5xS83N89zx_z5dPDYn67zA2lss8tL4qSG--5LQpmSk-Fp44JKZ2AQhhNrXCQM2oNE45JYYWFtCCaeCzpIKZgMXJt0LXqYrXWcauCrtTXIsSV0rGvTOMULbFGtuSSMUmtg1ITLRgSBYaYYewG1sXI6mJ437jUqzpsYju8rzBBmHAJIRlccHSZGFKKzu-vIqh2xapdc2rXnBqLHSLXY6QK3Q_zH_vVH_a27hRGSigoCGRMddaTTxlxgxc</recordid><startdate>20190730</startdate><enddate>20190730</enddate><creator>Brown, Natalie C</creator><creator>Newman, Michael</creator><creator>Brown, Kenneth R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20190730</creationdate><title>Handling leakage with subsystem codes</title><author>Brown, Natalie C ; Newman, Michael ; Brown, Kenneth R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-d699b6cff6d995cbf47f4e5788e7077ca4d7e0654dc57e587d7d0493a3f284493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation analysis</topic><topic>Depolarization</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Leakage</topic><topic>Physics</topic><topic>quantum computing</topic><topic>quantum error-correction</topic><topic>stabilizer subsystem codes</topic><topic>Subspaces</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Natalie C</creatorcontrib><creatorcontrib>Newman, Michael</creatorcontrib><creatorcontrib>Brown, Kenneth R</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Natalie C</au><au>Newman, Michael</au><au>Brown, Kenneth R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handling leakage with subsystem codes</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-07-30</date><risdate>2019</risdate><volume>21</volume><issue>7</issue><spage>73055</spage><pages>73055-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate different local codes in the low-error regime of a leakage gate error model. When restricting to bare-ancilla extraction, we observe that subsystem codes are good candidates for handling leakage, as their locality can limit damaging correlated errors. As a case study, we compare subspace surface codes to the subsystem surface codes introduced by Bravyi et al. In contrast to depolarizing noise, subsystem surface codes outperform same-distance subspace surface codes below error rates as high as ⪅ 7.5 × 10−4 while offering better per-qubit distance protection. Furthermore, we show that at low to intermediate distances, Bacon-Shor codes offer better per-qubit error protection against leakage in an ion-trap motivated error model below error rates as high as ⪅ 1.2 × 10−3. For restricted leakage models, this advantage can be extended to higher distances by relaxing to unverified two-qubit cat state extraction in the surface code. These results highlight an intrinsic benefit of subsystem code locality to error-corrective performance.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab3372</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2019-07, Vol.21 (7), p.73055
issn 1367-2630
1367-2630
language eng
recordid cdi_crossref_primary_10_1088_1367_2630_ab3372
source Institute of Physics IOPscience extra; IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Correlation analysis
Depolarization
Error analysis
Error correction
Leakage
Physics
quantum computing
quantum error-correction
stabilizer subsystem codes
Subspaces
Subsystems
title Handling leakage with subsystem codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handling%20leakage%20with%20subsystem%20codes&rft.jtitle=New%20journal%20of%20physics&rft.au=Brown,%20Natalie%20C&rft.date=2019-07-30&rft.volume=21&rft.issue=7&rft.spage=73055&rft.pages=73055-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab3372&rft_dat=%3Cproquest_cross%3E2312368003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312368003&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4b2a1db685584de08a3a75179202522e&rfr_iscdi=true