Linear response theory for quantum Gaussian processes
Fluctuation dissipation theorems (FDTs) connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2019-08, Vol.21 (8), p.83036 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 83036 |
container_title | New journal of physics |
container_volume | 21 |
creator | Mehboudi, Mohammad Parrondo, Juan M R Acín, Antonio |
description | Fluctuation dissipation theorems (FDTs) connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a FDT for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices. |
doi_str_mv | 10.1088/1367-2630/ab30f4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab30f4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d88881fd662846378eec9830ab8ec941</doaj_id><sourcerecordid>2312377921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-416ff84ca124095b2515934dd85d47284158188f0ac12ef1e1cd12187d6ee4b93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWwM0ZiYCHUZzuJM6IKSqVKLDBbjj8gURundjL03-MQVBgQt9zp9N5zdy9C14DvAXO-AJoXKckpXsiKYstO0OzYOv1Vn6OLEBqMATghM5Rt6tZIn3gTOtcGk_QfxvlDYp1P9oNs-2GXrOQQQi3bpPNOmRBMuERnVm6DufrOc_T29Pi6fE43L6v18mGTKsZ4nzLIreVMSSAMl1lFMshKyrTmmWYF4QwyDpxbLBUQY8GA0kCAFzo3hlUlnaP1xNVONqLz9U76g3CyFl8N59-F9H2ttkZoHgOszvPIzWnBjVElp1hWPBYMIutmYsUv9oMJvWjc4Nt4viAUCC2KkowqPKmUdyF4Y49bAYvRaDE6KUYnxWR0HLmbRmrX_TD_kd_-IW-bThAQXOB4M81Fpy39BJdoiag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312377921</pqid></control><display><type>article</type><title>Linear response theory for quantum Gaussian processes</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mehboudi, Mohammad ; Parrondo, Juan M R ; Acín, Antonio</creator><creatorcontrib>Mehboudi, Mohammad ; Parrondo, Juan M R ; Acín, Antonio</creatorcontrib><description>Fluctuation dissipation theorems (FDTs) connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a FDT for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab30f4</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Covariance matrix ; fluctuation-dissipation theory ; Gaussian process ; Gaussian quantum processes ; linear response theory ; Mathematical analysis ; Matrix methods ; Mechanical systems ; non-equilibrium quantum systems ; Perturbation ; Physics ; quantum channels ; quantum thermodynamics ; Steady state ; Theorems ; Time dependence ; Variation</subject><ispartof>New journal of physics, 2019-08, Vol.21 (8), p.83036</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-416ff84ca124095b2515934dd85d47284158188f0ac12ef1e1cd12187d6ee4b93</citedby><cites>FETCH-LOGICAL-c448t-416ff84ca124095b2515934dd85d47284158188f0ac12ef1e1cd12187d6ee4b93</cites><orcidid>0000-0002-0398-9200 ; 0000-0002-1355-3435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab30f4/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Mehboudi, Mohammad</creatorcontrib><creatorcontrib>Parrondo, Juan M R</creatorcontrib><creatorcontrib>Acín, Antonio</creatorcontrib><title>Linear response theory for quantum Gaussian processes</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Fluctuation dissipation theorems (FDTs) connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a FDT for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices.</description><subject>Covariance matrix</subject><subject>fluctuation-dissipation theory</subject><subject>Gaussian process</subject><subject>Gaussian quantum processes</subject><subject>linear response theory</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mechanical systems</subject><subject>non-equilibrium quantum systems</subject><subject>Perturbation</subject><subject>Physics</subject><subject>quantum channels</subject><subject>quantum thermodynamics</subject><subject>Steady state</subject><subject>Theorems</subject><subject>Time dependence</subject><subject>Variation</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kD1PwzAQhi0EEqWwM0ZiYCHUZzuJM6IKSqVKLDBbjj8gURundjL03-MQVBgQt9zp9N5zdy9C14DvAXO-AJoXKckpXsiKYstO0OzYOv1Vn6OLEBqMATghM5Rt6tZIn3gTOtcGk_QfxvlDYp1P9oNs-2GXrOQQQi3bpPNOmRBMuERnVm6DufrOc_T29Pi6fE43L6v18mGTKsZ4nzLIreVMSSAMl1lFMshKyrTmmWYF4QwyDpxbLBUQY8GA0kCAFzo3hlUlnaP1xNVONqLz9U76g3CyFl8N59-F9H2ttkZoHgOszvPIzWnBjVElp1hWPBYMIutmYsUv9oMJvWjc4Nt4viAUCC2KkowqPKmUdyF4Y49bAYvRaDE6KUYnxWR0HLmbRmrX_TD_kd_-IW-bThAQXOB4M81Fpy39BJdoiag</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Mehboudi, Mohammad</creator><creator>Parrondo, Juan M R</creator><creator>Acín, Antonio</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0398-9200</orcidid><orcidid>https://orcid.org/0000-0002-1355-3435</orcidid></search><sort><creationdate>20190821</creationdate><title>Linear response theory for quantum Gaussian processes</title><author>Mehboudi, Mohammad ; Parrondo, Juan M R ; Acín, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-416ff84ca124095b2515934dd85d47284158188f0ac12ef1e1cd12187d6ee4b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Covariance matrix</topic><topic>fluctuation-dissipation theory</topic><topic>Gaussian process</topic><topic>Gaussian quantum processes</topic><topic>linear response theory</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mechanical systems</topic><topic>non-equilibrium quantum systems</topic><topic>Perturbation</topic><topic>Physics</topic><topic>quantum channels</topic><topic>quantum thermodynamics</topic><topic>Steady state</topic><topic>Theorems</topic><topic>Time dependence</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehboudi, Mohammad</creatorcontrib><creatorcontrib>Parrondo, Juan M R</creatorcontrib><creatorcontrib>Acín, Antonio</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehboudi, Mohammad</au><au>Parrondo, Juan M R</au><au>Acín, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear response theory for quantum Gaussian processes</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>21</volume><issue>8</issue><spage>83036</spage><pages>83036-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Fluctuation dissipation theorems (FDTs) connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a FDT for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab30f4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0398-9200</orcidid><orcidid>https://orcid.org/0000-0002-1355-3435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2019-08, Vol.21 (8), p.83036 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_ab30f4 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Covariance matrix fluctuation-dissipation theory Gaussian process Gaussian quantum processes linear response theory Mathematical analysis Matrix methods Mechanical systems non-equilibrium quantum systems Perturbation Physics quantum channels quantum thermodynamics Steady state Theorems Time dependence Variation |
title | Linear response theory for quantum Gaussian processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20response%20theory%20for%20quantum%20Gaussian%20processes&rft.jtitle=New%20journal%20of%20physics&rft.au=Mehboudi,%20Mohammad&rft.date=2019-08-21&rft.volume=21&rft.issue=8&rft.spage=83036&rft.pages=83036-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab30f4&rft_dat=%3Cproquest_cross%3E2312377921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312377921&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d88881fd662846378eec9830ab8ec941&rfr_iscdi=true |