Comparing complex networks: in defence of the simple
To improve our understanding of connected systems, different tools derived from statistics, signal processing, information theory and statistical physics have been developed in the last decade. Here, we will focus on the graph comparison problem. Although different estimates exist to quantify how di...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2019-01, Vol.21 (1), p.13033 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 13033 |
container_title | New journal of physics |
container_volume | 21 |
creator | Martínez, Johann H Chavez, Mario |
description | To improve our understanding of connected systems, different tools derived from statistics, signal processing, information theory and statistical physics have been developed in the last decade. Here, we will focus on the graph comparison problem. Although different estimates exist to quantify how different two networks are, an appropriate metric has not been proposed. Within this framework we compare the performances of two networks distances (a topological descriptor and a kernel-based approach as representative methods of the main classes considered) with the simple Euclidean metric. We study the performance of metrics as the efficiency of distinguish two network's groups and the computing time. We evaluate these methods on synthetic and real-world networks (brain connectomes and social networks), and we show that the Euclidean distance efficiently captures networks differences in comparison to other proposals. We conclude that the operational use of complicated methods can be justified only by showing that they outperform well-understood traditional statistics, such as Euclidean metrics. |
doi_str_mv | 10.1088/1367-2630/ab0065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_ab0065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_916ecd33f7404b3fa048a4a0a616d647</doaj_id><sourcerecordid>2312378053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-3ad23b21c1fc8c2ba652a4155eb70edaf97df7ab8bbab993ab1e4ff0d60acc133</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosoqKt3jwUPIrg6k6Rp15ss6goLXvQcJl_adW1qWr_-va2VVUE8ZXh55iEzkyR7CMcIRXGCXOZjJjmckAaQ2VqytYrWf9SbyXbTLAAQC8a2EjENjzXFsrpLTVct3VtaufY1xIfmNC2r1DrvKuPS4NP23qVN2TM7yYanZeN2v95RcntxfjOdjefXl1fTs_nYiIK1Y06Wcc3QoDeFYZpkxkhgljmdg7PkJ7n1OelCa9KTCSeNTngPVgIZg5yPkqvBawMtVB3LR4rvKlCpPoMQ7xTFtjRLpyYonbGc-1yA0NwTiIIEAUmUVoq8cx0Ornta_lLNzuaqz4ABExLkC3bs_sDWMTw9u6ZVi_Acq25UxTgynheQ9b-DgTIxNE10fqVFUP1NVL901S9dDTfpWo6GljLU385_8IM_8GpRK4YKFSAHzlVtPf8ATEmXvw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312378053</pqid></control><display><type>article</type><title>Comparing complex networks: in defence of the simple</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Martínez, Johann H ; Chavez, Mario</creator><creatorcontrib>Martínez, Johann H ; Chavez, Mario</creatorcontrib><description>To improve our understanding of connected systems, different tools derived from statistics, signal processing, information theory and statistical physics have been developed in the last decade. Here, we will focus on the graph comparison problem. Although different estimates exist to quantify how different two networks are, an appropriate metric has not been proposed. Within this framework we compare the performances of two networks distances (a topological descriptor and a kernel-based approach as representative methods of the main classes considered) with the simple Euclidean metric. We study the performance of metrics as the efficiency of distinguish two network's groups and the computing time. We evaluate these methods on synthetic and real-world networks (brain connectomes and social networks), and we show that the Euclidean distance efficiently captures networks differences in comparison to other proposals. We conclude that the operational use of complicated methods can be justified only by showing that they outperform well-understood traditional statistics, such as Euclidean metrics.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab0065</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>complex systems ; Computing time ; dissimilarity ; Euclidean geometry ; Graph comparison ; Information theory ; kernel distance ; Life Sciences ; network distances ; Neurons and Cognition ; Physics ; Signal processing ; Social networks</subject><ispartof>New journal of physics, 2019-01, Vol.21 (1), p.13033</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-3ad23b21c1fc8c2ba652a4155eb70edaf97df7ab8bbab993ab1e4ff0d60acc133</citedby><cites>FETCH-LOGICAL-c482t-3ad23b21c1fc8c2ba652a4155eb70edaf97df7ab8bbab993ab1e4ff0d60acc133</cites><orcidid>0000-0002-3365-8189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ab0065/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,2096,27901,27902,38845,38867,53815,53842</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02024606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez, Johann H</creatorcontrib><creatorcontrib>Chavez, Mario</creatorcontrib><title>Comparing complex networks: in defence of the simple</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>To improve our understanding of connected systems, different tools derived from statistics, signal processing, information theory and statistical physics have been developed in the last decade. Here, we will focus on the graph comparison problem. Although different estimates exist to quantify how different two networks are, an appropriate metric has not been proposed. Within this framework we compare the performances of two networks distances (a topological descriptor and a kernel-based approach as representative methods of the main classes considered) with the simple Euclidean metric. We study the performance of metrics as the efficiency of distinguish two network's groups and the computing time. We evaluate these methods on synthetic and real-world networks (brain connectomes and social networks), and we show that the Euclidean distance efficiently captures networks differences in comparison to other proposals. We conclude that the operational use of complicated methods can be justified only by showing that they outperform well-understood traditional statistics, such as Euclidean metrics.</description><subject>complex systems</subject><subject>Computing time</subject><subject>dissimilarity</subject><subject>Euclidean geometry</subject><subject>Graph comparison</subject><subject>Information theory</subject><subject>kernel distance</subject><subject>Life Sciences</subject><subject>network distances</subject><subject>Neurons and Cognition</subject><subject>Physics</subject><subject>Signal processing</subject><subject>Social networks</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LxDAQhosoqKt3jwUPIrg6k6Rp15ss6goLXvQcJl_adW1qWr_-va2VVUE8ZXh55iEzkyR7CMcIRXGCXOZjJjmckAaQ2VqytYrWf9SbyXbTLAAQC8a2EjENjzXFsrpLTVct3VtaufY1xIfmNC2r1DrvKuPS4NP23qVN2TM7yYanZeN2v95RcntxfjOdjefXl1fTs_nYiIK1Y06Wcc3QoDeFYZpkxkhgljmdg7PkJ7n1OelCa9KTCSeNTngPVgIZg5yPkqvBawMtVB3LR4rvKlCpPoMQ7xTFtjRLpyYonbGc-1yA0NwTiIIEAUmUVoq8cx0Ornta_lLNzuaqz4ABExLkC3bs_sDWMTw9u6ZVi_Acq25UxTgynheQ9b-DgTIxNE10fqVFUP1NVL901S9dDTfpWo6GljLU385_8IM_8GpRK4YKFSAHzlVtPf8ATEmXvw</recordid><startdate>20190131</startdate><enddate>20190131</enddate><creator>Martínez, Johann H</creator><creator>Chavez, Mario</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3365-8189</orcidid></search><sort><creationdate>20190131</creationdate><title>Comparing complex networks: in defence of the simple</title><author>Martínez, Johann H ; Chavez, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-3ad23b21c1fc8c2ba652a4155eb70edaf97df7ab8bbab993ab1e4ff0d60acc133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>complex systems</topic><topic>Computing time</topic><topic>dissimilarity</topic><topic>Euclidean geometry</topic><topic>Graph comparison</topic><topic>Information theory</topic><topic>kernel distance</topic><topic>Life Sciences</topic><topic>network distances</topic><topic>Neurons and Cognition</topic><topic>Physics</topic><topic>Signal processing</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, Johann H</creatorcontrib><creatorcontrib>Chavez, Mario</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, Johann H</au><au>Chavez, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing complex networks: in defence of the simple</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2019-01-31</date><risdate>2019</risdate><volume>21</volume><issue>1</issue><spage>13033</spage><pages>13033-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>To improve our understanding of connected systems, different tools derived from statistics, signal processing, information theory and statistical physics have been developed in the last decade. Here, we will focus on the graph comparison problem. Although different estimates exist to quantify how different two networks are, an appropriate metric has not been proposed. Within this framework we compare the performances of two networks distances (a topological descriptor and a kernel-based approach as representative methods of the main classes considered) with the simple Euclidean metric. We study the performance of metrics as the efficiency of distinguish two network's groups and the computing time. We evaluate these methods on synthetic and real-world networks (brain connectomes and social networks), and we show that the Euclidean distance efficiently captures networks differences in comparison to other proposals. We conclude that the operational use of complicated methods can be justified only by showing that they outperform well-understood traditional statistics, such as Euclidean metrics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab0065</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3365-8189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2019-01, Vol.21 (1), p.13033 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_ab0065 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | complex systems Computing time dissimilarity Euclidean geometry Graph comparison Information theory kernel distance Life Sciences network distances Neurons and Cognition Physics Signal processing Social networks |
title | Comparing complex networks: in defence of the simple |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20complex%20networks:%20in%20defence%20of%20the%20simple&rft.jtitle=New%20journal%20of%20physics&rft.au=Mart%C3%ADnez,%20Johann%20H&rft.date=2019-01-31&rft.volume=21&rft.issue=1&rft.spage=13033&rft.pages=13033-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab0065&rft_dat=%3Cproquest_cross%3E2312378053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312378053&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_916ecd33f7404b3fa048a4a0a616d647&rfr_iscdi=true |