Floquet stroboscopic divisibility in non-Markovian dynamics
We provide a general description of a time-local master equation for a system coupled to a non-Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by consider...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2018-09, Vol.20 (9), p.93004 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 93004 |
container_title | New journal of physics |
container_volume | 20 |
creator | Bastidas, Victor M Kyaw, Thi Ha Tangpanitanon, Jirawat Romero, Guillermo Kwek, Leong-Chuan Angelakis, Dimitris G |
description | We provide a general description of a time-local master equation for a system coupled to a non-Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by considering a harmonic oscillator coupled to both non-Markovian and Markovian baths. Our findings provide us with a theory for the exact calculation of spectral properties of time-local non-Markovian Liouvillian operators, and might shed light on the nature and existence of the steady state in non-Markovian dynamics. |
doi_str_mv | 10.1088/1367-2630/aadcbd |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_aadcbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_132c9a82b2ff4d56a3dfe992f4fa4d64</doaj_id><sourcerecordid>2312526519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-ff7051916038ea6e7f50366304b2b48ee4443cf7a30cde76bb1042a269af151e3</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBWr17DHg1dr-ySfAkxWqh4kXPy9sv2dpm424q9N-bGKlePL3HMDNv3iB0SfANwVU1I0yUORUMzwCMVuYITQ7Q8Z_9FJ2ltMaYkIrSCbpdbMLHznZZ6mJQIenQep0Z_-mTV37ju33mm6wJTf4E8T18emgys29g63U6RycONsle_Mwpel3cv8wf89Xzw3J-t8o1J6LLnStxQWoiMKssCFu6AjPRR-GKKl5Zyzln2pXAsDa2FEoRzClQUYMjBbFsipajrwmwlm30W4h7GcDLbyDENwmx83pjJWFU11BRRZ3jphDAjLN1TR13wI3gvdfV6NXG4e_UyXXYxaaPLykjtKCij9qz8MjSMaQUrTtcJVgOdcuhTzn0Kce6e8n1KPGh_fX8l_4FtX2BgQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312526519</pqid></control><display><type>article</type><title>Floquet stroboscopic divisibility in non-Markovian dynamics</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bastidas, Victor M ; Kyaw, Thi Ha ; Tangpanitanon, Jirawat ; Romero, Guillermo ; Kwek, Leong-Chuan ; Angelakis, Dimitris G</creator><creatorcontrib>Bastidas, Victor M ; Kyaw, Thi Ha ; Tangpanitanon, Jirawat ; Romero, Guillermo ; Kwek, Leong-Chuan ; Angelakis, Dimitris G</creatorcontrib><description>We provide a general description of a time-local master equation for a system coupled to a non-Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by considering a harmonic oscillator coupled to both non-Markovian and Markovian baths. Our findings provide us with a theory for the exact calculation of spectral properties of time-local non-Markovian Liouvillian operators, and might shed light on the nature and existence of the steady state in non-Markovian dynamics.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aadcbd</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>dephasing ; Harmonic oscillators ; Markov analysis ; non-Markovian dynamics ; Physics ; quantum coherence ; quantum dynamics ; quantum master equations</subject><ispartof>New journal of physics, 2018-09, Vol.20 (9), p.93004</ispartof><rights>2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-ff7051916038ea6e7f50366304b2b48ee4443cf7a30cde76bb1042a269af151e3</citedby><cites>FETCH-LOGICAL-c416t-ff7051916038ea6e7f50366304b2b48ee4443cf7a30cde76bb1042a269af151e3</cites><orcidid>0000-0002-3557-2709 ; 0000-0003-0435-0422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aadcbd/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Bastidas, Victor M</creatorcontrib><creatorcontrib>Kyaw, Thi Ha</creatorcontrib><creatorcontrib>Tangpanitanon, Jirawat</creatorcontrib><creatorcontrib>Romero, Guillermo</creatorcontrib><creatorcontrib>Kwek, Leong-Chuan</creatorcontrib><creatorcontrib>Angelakis, Dimitris G</creatorcontrib><title>Floquet stroboscopic divisibility in non-Markovian dynamics</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We provide a general description of a time-local master equation for a system coupled to a non-Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by considering a harmonic oscillator coupled to both non-Markovian and Markovian baths. Our findings provide us with a theory for the exact calculation of spectral properties of time-local non-Markovian Liouvillian operators, and might shed light on the nature and existence of the steady state in non-Markovian dynamics.</description><subject>dephasing</subject><subject>Harmonic oscillators</subject><subject>Markov analysis</subject><subject>non-Markovian dynamics</subject><subject>Physics</subject><subject>quantum coherence</subject><subject>quantum dynamics</subject><subject>quantum master equations</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1UE1Lw0AUXETBWr17DHg1dr-ySfAkxWqh4kXPy9sv2dpm424q9N-bGKlePL3HMDNv3iB0SfANwVU1I0yUORUMzwCMVuYITQ7Q8Z_9FJ2ltMaYkIrSCbpdbMLHznZZ6mJQIenQep0Z_-mTV37ju33mm6wJTf4E8T18emgys29g63U6RycONsle_Mwpel3cv8wf89Xzw3J-t8o1J6LLnStxQWoiMKssCFu6AjPRR-GKKl5Zyzln2pXAsDa2FEoRzClQUYMjBbFsipajrwmwlm30W4h7GcDLbyDENwmx83pjJWFU11BRRZ3jphDAjLN1TR13wI3gvdfV6NXG4e_UyXXYxaaPLykjtKCij9qz8MjSMaQUrTtcJVgOdcuhTzn0Kce6e8n1KPGh_fX8l_4FtX2BgQ</recordid><startdate>20180905</startdate><enddate>20180905</enddate><creator>Bastidas, Victor M</creator><creator>Kyaw, Thi Ha</creator><creator>Tangpanitanon, Jirawat</creator><creator>Romero, Guillermo</creator><creator>Kwek, Leong-Chuan</creator><creator>Angelakis, Dimitris G</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3557-2709</orcidid><orcidid>https://orcid.org/0000-0003-0435-0422</orcidid></search><sort><creationdate>20180905</creationdate><title>Floquet stroboscopic divisibility in non-Markovian dynamics</title><author>Bastidas, Victor M ; Kyaw, Thi Ha ; Tangpanitanon, Jirawat ; Romero, Guillermo ; Kwek, Leong-Chuan ; Angelakis, Dimitris G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-ff7051916038ea6e7f50366304b2b48ee4443cf7a30cde76bb1042a269af151e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>dephasing</topic><topic>Harmonic oscillators</topic><topic>Markov analysis</topic><topic>non-Markovian dynamics</topic><topic>Physics</topic><topic>quantum coherence</topic><topic>quantum dynamics</topic><topic>quantum master equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastidas, Victor M</creatorcontrib><creatorcontrib>Kyaw, Thi Ha</creatorcontrib><creatorcontrib>Tangpanitanon, Jirawat</creatorcontrib><creatorcontrib>Romero, Guillermo</creatorcontrib><creatorcontrib>Kwek, Leong-Chuan</creatorcontrib><creatorcontrib>Angelakis, Dimitris G</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastidas, Victor M</au><au>Kyaw, Thi Ha</au><au>Tangpanitanon, Jirawat</au><au>Romero, Guillermo</au><au>Kwek, Leong-Chuan</au><au>Angelakis, Dimitris G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floquet stroboscopic divisibility in non-Markovian dynamics</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2018-09-05</date><risdate>2018</risdate><volume>20</volume><issue>9</issue><spage>93004</spage><pages>93004-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We provide a general description of a time-local master equation for a system coupled to a non-Markovian reservoir based on Floquet theory. This allows us to have a divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the theory by considering a harmonic oscillator coupled to both non-Markovian and Markovian baths. Our findings provide us with a theory for the exact calculation of spectral properties of time-local non-Markovian Liouvillian operators, and might shed light on the nature and existence of the steady state in non-Markovian dynamics.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aadcbd</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3557-2709</orcidid><orcidid>https://orcid.org/0000-0003-0435-0422</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2018-09, Vol.20 (9), p.93004 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_aadcbd |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | dephasing Harmonic oscillators Markov analysis non-Markovian dynamics Physics quantum coherence quantum dynamics quantum master equations |
title | Floquet stroboscopic divisibility in non-Markovian dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floquet%20stroboscopic%20divisibility%20in%20non-Markovian%20dynamics&rft.jtitle=New%20journal%20of%20physics&rft.au=Bastidas,%20Victor%20M&rft.date=2018-09-05&rft.volume=20&rft.issue=9&rft.spage=93004&rft.pages=93004-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aadcbd&rft_dat=%3Cproquest_cross%3E2312526519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312526519&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_132c9a82b2ff4d56a3dfe992f4fa4d64&rfr_iscdi=true |