Nucleation of rotating crystals by Thiovulum majus bacteria
Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the ea...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2018-01, Vol.20 (1), p.15007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15007 |
container_title | New journal of physics |
container_volume | 20 |
creator | Petroff, A P Libchaber, A |
description | Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63 6 s before escaping to the bulk fluid. The diffusion coefficient D eff = 7.98 0.1 m 2 s − 1 of these 8.5 m diameter cells corresponds to a temperature of ( 4.16 0.05 ) × 10 4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 0.2 m of each other. |
doi_str_mv | 10.1088/1367-2630/aa9d58 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1367_2630_aa9d58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f71b8f4e628f4612b4d1c216202dcedd</doaj_id><sourcerecordid>2312534676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-56654c58efbd38d1a861f49ae8286c1c527a4ad25b6b69a37e07131feab51953</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhSMEEqWwM0ZiYCHU14kdR0yo4lGpgqW7deNHSdTGwUmQ-u9xCSoMsNhXR9851z5RdAnkFogQM0h5nlCekhlioZk4iiYH6fjXfBqddV1NCICgdBLdvQxqY7CvXBM7G3vXh7lZx8rvuh43XVzu4tVb5T6GzbCNt1gPQULVG1_heXRiA2Iuvu9ptHp8WM2fk-Xr02J-v0xURnifMM5ZppgwttSp0ICCg80KNIIKrkAxmmOGmrKSl7zANDckhxSswZJBwdJptBhjtcNatr7aot9Jh5X8EpxfS_R9Fb4hbQ6lsJnhNJwcaJlpUBQ4JVQro3XIuhqzWu_eB9P1snaDb8LrJU2BsjTjOQ8UGSnlXdd5Yw9bgch923Jfp9zXKce2g-V6tFSu_cls6lbSYJEEGCG5bLUN5M0f5L_Bnz16jKM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312534676</pqid></control><display><type>article</type><title>Nucleation of rotating crystals by Thiovulum majus bacteria</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Petroff, A P ; Libchaber, A</creator><creatorcontrib>Petroff, A P ; Libchaber, A</creatorcontrib><description>Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63 6 s before escaping to the bulk fluid. The diffusion coefficient D eff = 7.98 0.1 m 2 s − 1 of these 8.5 m diameter cells corresponds to a temperature of ( 4.16 0.05 ) × 10 4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 0.2 m of each other.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/aa9d58</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>active matter ; Bacteria ; Brownian motion ; Coalescing ; Crystallites ; Crystallization ; Crystals ; Diameters ; Diffusion coefficient ; Dimers ; fluid mechanics ; Nucleation ; Physics ; Rotation ; Swimming ; Two dimensional models ; Variation</subject><ispartof>New journal of physics, 2018-01, Vol.20 (1), p.15007</ispartof><rights>2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-56654c58efbd38d1a861f49ae8286c1c527a4ad25b6b69a37e07131feab51953</citedby><cites>FETCH-LOGICAL-c406t-56654c58efbd38d1a861f49ae8286c1c527a4ad25b6b69a37e07131feab51953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/aa9d58/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Petroff, A P</creatorcontrib><creatorcontrib>Libchaber, A</creatorcontrib><title>Nucleation of rotating crystals by Thiovulum majus bacteria</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63 6 s before escaping to the bulk fluid. The diffusion coefficient D eff = 7.98 0.1 m 2 s − 1 of these 8.5 m diameter cells corresponds to a temperature of ( 4.16 0.05 ) × 10 4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 0.2 m of each other.</description><subject>active matter</subject><subject>Bacteria</subject><subject>Brownian motion</subject><subject>Coalescing</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Diameters</subject><subject>Diffusion coefficient</subject><subject>Dimers</subject><subject>fluid mechanics</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Rotation</subject><subject>Swimming</subject><subject>Two dimensional models</subject><subject>Variation</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kDtPwzAUhSMEEqWwM0ZiYCHU14kdR0yo4lGpgqW7deNHSdTGwUmQ-u9xCSoMsNhXR9851z5RdAnkFogQM0h5nlCekhlioZk4iiYH6fjXfBqddV1NCICgdBLdvQxqY7CvXBM7G3vXh7lZx8rvuh43XVzu4tVb5T6GzbCNt1gPQULVG1_heXRiA2Iuvu9ptHp8WM2fk-Xr02J-v0xURnifMM5ZppgwttSp0ICCg80KNIIKrkAxmmOGmrKSl7zANDckhxSswZJBwdJptBhjtcNatr7aot9Jh5X8EpxfS_R9Fb4hbQ6lsJnhNJwcaJlpUBQ4JVQro3XIuhqzWu_eB9P1snaDb8LrJU2BsjTjOQ8UGSnlXdd5Yw9bgch923Jfp9zXKce2g-V6tFSu_cls6lbSYJEEGCG5bLUN5M0f5L_Bnz16jKM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Petroff, A P</creator><creator>Libchaber, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Nucleation of rotating crystals by Thiovulum majus bacteria</title><author>Petroff, A P ; Libchaber, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-56654c58efbd38d1a861f49ae8286c1c527a4ad25b6b69a37e07131feab51953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>active matter</topic><topic>Bacteria</topic><topic>Brownian motion</topic><topic>Coalescing</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Diameters</topic><topic>Diffusion coefficient</topic><topic>Dimers</topic><topic>fluid mechanics</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Rotation</topic><topic>Swimming</topic><topic>Two dimensional models</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petroff, A P</creatorcontrib><creatorcontrib>Libchaber, A</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petroff, A P</au><au>Libchaber, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleation of rotating crystals by Thiovulum majus bacteria</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>20</volume><issue>1</issue><spage>15007</spage><pages>15007-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63 6 s before escaping to the bulk fluid. The diffusion coefficient D eff = 7.98 0.1 m 2 s − 1 of these 8.5 m diameter cells corresponds to a temperature of ( 4.16 0.05 ) × 10 4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 0.2 m of each other.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/aa9d58</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2018-01, Vol.20 (1), p.15007 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1367_2630_aa9d58 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | active matter Bacteria Brownian motion Coalescing Crystallites Crystallization Crystals Diameters Diffusion coefficient Dimers fluid mechanics Nucleation Physics Rotation Swimming Two dimensional models Variation |
title | Nucleation of rotating crystals by Thiovulum majus bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleation%20of%20rotating%20crystals%20by%20Thiovulum%20majus%20bacteria&rft.jtitle=New%20journal%20of%20physics&rft.au=Petroff,%20A%20P&rft.date=2018-01-01&rft.volume=20&rft.issue=1&rft.spage=15007&rft.pages=15007-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/aa9d58&rft_dat=%3Cproquest_cross%3E2312534676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312534676&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_f71b8f4e628f4612b4d1c216202dcedd&rfr_iscdi=true |