Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem

The performance of superconducting devices like qubits, superconducting quantum interference devices (SQUIDs), and particle detectors is often limited by finite coherence times and 1 / f noise. Various types of slow fluctuators in the Josephson junctions and the passive parts of these superconductin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2023-10, Vol.36 (10), p.105007
Hauptverfasser: Herbst, M, Fleischmann, A, Hengstler, D, Mazibrada, D, Münch, L, Reifenberger, A, Ständer, C, Enss, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105007
container_title Superconductor science & technology
container_volume 36
creator Herbst, M
Fleischmann, A
Hengstler, D
Mazibrada, D
Münch, L
Reifenberger, A
Ständer, C
Enss, C
description The performance of superconducting devices like qubits, superconducting quantum interference devices (SQUIDs), and particle detectors is often limited by finite coherence times and 1 / f noise. Various types of slow fluctuators in the Josephson junctions and the passive parts of these superconducting circuits can be the cause, and devices usually suffer from a combination of different noise sources, which are hard to disentangle and therefore hard to eliminate. One contribution is magnetic 1 / f noise caused by fluctuating magnetic moments of magnetic impurities or dangling bonds in superconducting inductances, surface oxides, insulating oxide layers, and adsorbates. In an effort to further analyze such sources of noise, we have developed an experimental set-up to measure both the complex impedance of superconducting microstructures, and the overall noise picked up by these structures. This allows for important sanity checks by connecting both quantities via the fluctuation-dissipation theorem. Since these two measurements are sensitive to different types of noise, we are able to identify and quantify individual noise sources. Furthermore, our measurements are not limited by the quantum noise limit of front-end SQUIDs, allowing us to measure noise caused by just a few ppm of impurities in close-by materials. We present measurements of the insulating SiO 2 layers of our devices, and magnetically doped noble metal layers in the vicinity of the pickup coils at T = 40 mK − 800 mK and f = 1 Hz   − 100 kHz .
doi_str_mv 10.1088/1361-6668/acf166
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_acf166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustacf166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-7c68130f7995a71fd1d1a838e9d4e013f58baca4a8de04ee7a4d66a7226f856a3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmNw55gfQFnctGl6RBMwpCEucI5M4oxMW1ol7YF_z7ohbpxsPz9bTx9jtyDuQWi9AKmgUErpBVoPSp2x2Z90zmairWVRikpfsquct0IAaFnO2OaVMI8pxA3f4ybSECyHheexC5l4iDyPPSXbRTfa4egKNnV5SIdxTJQ5RseHL-J-Nyk4hC4WLuQc-mM_7bpE-2t24XGX6ea3ztnH0-P7clWs355flg_rwpZSDkVjlQYpfNO2NTbgHThALTW1riIB0tf6Ey1WqB2JiqjByimFTVkqr2uFcs7E6e-UMifypk9hj-nbgDATKDNRMRMVcwJ1OLk7nYSuN9tuTPEQ8H_7D4CTbMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Herbst, M ; Fleischmann, A ; Hengstler, D ; Mazibrada, D ; Münch, L ; Reifenberger, A ; Ständer, C ; Enss, C</creator><creatorcontrib>Herbst, M ; Fleischmann, A ; Hengstler, D ; Mazibrada, D ; Münch, L ; Reifenberger, A ; Ständer, C ; Enss, C</creatorcontrib><description>The performance of superconducting devices like qubits, superconducting quantum interference devices (SQUIDs), and particle detectors is often limited by finite coherence times and 1 / f noise. Various types of slow fluctuators in the Josephson junctions and the passive parts of these superconducting circuits can be the cause, and devices usually suffer from a combination of different noise sources, which are hard to disentangle and therefore hard to eliminate. One contribution is magnetic 1 / f noise caused by fluctuating magnetic moments of magnetic impurities or dangling bonds in superconducting inductances, surface oxides, insulating oxide layers, and adsorbates. In an effort to further analyze such sources of noise, we have developed an experimental set-up to measure both the complex impedance of superconducting microstructures, and the overall noise picked up by these structures. This allows for important sanity checks by connecting both quantities via the fluctuation-dissipation theorem. Since these two measurements are sensitive to different types of noise, we are able to identify and quantify individual noise sources. Furthermore, our measurements are not limited by the quantum noise limit of front-end SQUIDs, allowing us to measure noise caused by just a few ppm of impurities in close-by materials. We present measurements of the insulating SiO 2 layers of our devices, and magnetically doped noble metal layers in the vicinity of the pickup coils at T = 40 mK − 800 mK and f = 1 Hz   − 100 kHz .</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/acf166</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>1/f noise ; fluctuation-dissipation theorem ; superconducting microstructures</subject><ispartof>Superconductor science &amp; technology, 2023-10, Vol.36 (10), p.105007</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-7c68130f7995a71fd1d1a838e9d4e013f58baca4a8de04ee7a4d66a7226f856a3</cites><orcidid>0000-0002-0218-5059 ; 0009-0009-4857-2298 ; 0000-0003-4121-5836 ; 0000-0001-9943-7090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/acf166/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Herbst, M</creatorcontrib><creatorcontrib>Fleischmann, A</creatorcontrib><creatorcontrib>Hengstler, D</creatorcontrib><creatorcontrib>Mazibrada, D</creatorcontrib><creatorcontrib>Münch, L</creatorcontrib><creatorcontrib>Reifenberger, A</creatorcontrib><creatorcontrib>Ständer, C</creatorcontrib><creatorcontrib>Enss, C</creatorcontrib><title>Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>The performance of superconducting devices like qubits, superconducting quantum interference devices (SQUIDs), and particle detectors is often limited by finite coherence times and 1 / f noise. Various types of slow fluctuators in the Josephson junctions and the passive parts of these superconducting circuits can be the cause, and devices usually suffer from a combination of different noise sources, which are hard to disentangle and therefore hard to eliminate. One contribution is magnetic 1 / f noise caused by fluctuating magnetic moments of magnetic impurities or dangling bonds in superconducting inductances, surface oxides, insulating oxide layers, and adsorbates. In an effort to further analyze such sources of noise, we have developed an experimental set-up to measure both the complex impedance of superconducting microstructures, and the overall noise picked up by these structures. This allows for important sanity checks by connecting both quantities via the fluctuation-dissipation theorem. Since these two measurements are sensitive to different types of noise, we are able to identify and quantify individual noise sources. Furthermore, our measurements are not limited by the quantum noise limit of front-end SQUIDs, allowing us to measure noise caused by just a few ppm of impurities in close-by materials. We present measurements of the insulating SiO 2 layers of our devices, and magnetically doped noble metal layers in the vicinity of the pickup coils at T = 40 mK − 800 mK and f = 1 Hz   − 100 kHz .</description><subject>1/f noise</subject><subject>fluctuation-dissipation theorem</subject><subject>superconducting microstructures</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSMEEmNw55gfQFnctGl6RBMwpCEucI5M4oxMW1ol7YF_z7ohbpxsPz9bTx9jtyDuQWi9AKmgUErpBVoPSp2x2Z90zmairWVRikpfsquct0IAaFnO2OaVMI8pxA3f4ybSECyHheexC5l4iDyPPSXbRTfa4egKNnV5SIdxTJQ5RseHL-J-Nyk4hC4WLuQc-mM_7bpE-2t24XGX6ea3ztnH0-P7clWs355flg_rwpZSDkVjlQYpfNO2NTbgHThALTW1riIB0tf6Ey1WqB2JiqjByimFTVkqr2uFcs7E6e-UMifypk9hj-nbgDATKDNRMRMVcwJ1OLk7nYSuN9tuTPEQ8H_7D4CTbMo</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Herbst, M</creator><creator>Fleischmann, A</creator><creator>Hengstler, D</creator><creator>Mazibrada, D</creator><creator>Münch, L</creator><creator>Reifenberger, A</creator><creator>Ständer, C</creator><creator>Enss, C</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0218-5059</orcidid><orcidid>https://orcid.org/0009-0009-4857-2298</orcidid><orcidid>https://orcid.org/0000-0003-4121-5836</orcidid><orcidid>https://orcid.org/0000-0001-9943-7090</orcidid></search><sort><creationdate>20231001</creationdate><title>Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem</title><author>Herbst, M ; Fleischmann, A ; Hengstler, D ; Mazibrada, D ; Münch, L ; Reifenberger, A ; Ständer, C ; Enss, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-7c68130f7995a71fd1d1a838e9d4e013f58baca4a8de04ee7a4d66a7226f856a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1/f noise</topic><topic>fluctuation-dissipation theorem</topic><topic>superconducting microstructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herbst, M</creatorcontrib><creatorcontrib>Fleischmann, A</creatorcontrib><creatorcontrib>Hengstler, D</creatorcontrib><creatorcontrib>Mazibrada, D</creatorcontrib><creatorcontrib>Münch, L</creatorcontrib><creatorcontrib>Reifenberger, A</creatorcontrib><creatorcontrib>Ständer, C</creatorcontrib><creatorcontrib>Enss, C</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herbst, M</au><au>Fleischmann, A</au><au>Hengstler, D</au><au>Mazibrada, D</au><au>Münch, L</au><au>Reifenberger, A</au><au>Ständer, C</au><au>Enss, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>10</issue><spage>105007</spage><pages>105007-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>The performance of superconducting devices like qubits, superconducting quantum interference devices (SQUIDs), and particle detectors is often limited by finite coherence times and 1 / f noise. Various types of slow fluctuators in the Josephson junctions and the passive parts of these superconducting circuits can be the cause, and devices usually suffer from a combination of different noise sources, which are hard to disentangle and therefore hard to eliminate. One contribution is magnetic 1 / f noise caused by fluctuating magnetic moments of magnetic impurities or dangling bonds in superconducting inductances, surface oxides, insulating oxide layers, and adsorbates. In an effort to further analyze such sources of noise, we have developed an experimental set-up to measure both the complex impedance of superconducting microstructures, and the overall noise picked up by these structures. This allows for important sanity checks by connecting both quantities via the fluctuation-dissipation theorem. Since these two measurements are sensitive to different types of noise, we are able to identify and quantify individual noise sources. Furthermore, our measurements are not limited by the quantum noise limit of front-end SQUIDs, allowing us to measure noise caused by just a few ppm of impurities in close-by materials. We present measurements of the insulating SiO 2 layers of our devices, and magnetically doped noble metal layers in the vicinity of the pickup coils at T = 40 mK − 800 mK and f = 1 Hz   − 100 kHz .</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/acf166</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0218-5059</orcidid><orcidid>https://orcid.org/0009-0009-4857-2298</orcidid><orcidid>https://orcid.org/0000-0003-4121-5836</orcidid><orcidid>https://orcid.org/0000-0001-9943-7090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2023-10, Vol.36 (10), p.105007
issn 0953-2048
1361-6668
language eng
recordid cdi_crossref_primary_10_1088_1361_6668_acf166
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 1/f noise
fluctuation-dissipation theorem
superconducting microstructures
title Measuring magnetic 1/f noise in superconducting microstructures and the fluctuation-dissipation theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20magnetic%201/f%20noise%20in%20superconducting%20microstructures%20and%20the%20fluctuation-dissipation%20theorem&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Herbst,%20M&rft.date=2023-10-01&rft.volume=36&rft.issue=10&rft.spage=105007&rft.pages=105007-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/acf166&rft_dat=%3Ciop_cross%3Esustacf166%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true