Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions

Nanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 × 2 × 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2021-03, Vol.34 (3), p.35014
Hauptverfasser: Faley, M I, Bikulov, T I, Bosboom, V, Golubov, A A, Dunin-Borkowski, R E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35014
container_title Superconductor science & technology
container_volume 34
creator Faley, M I
Bikulov, T I
Bosboom, V
Golubov, A A
Dunin-Borkowski, R E
description Nanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 × 2 × 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-based nanobridges, which had widths down to 10 nm and were patterned using hydrogen silsesquioxane negative resist. Numerical simulations of the superconducting current and the spatial distribution of the order parameter in the nanobridge JJs and the nanoSQUID, as well as the current-phase relationship in the nanobridge JJs, were performed according to Ginzburg-Landau equations on one-dimensional and two-dimensional grids. Bulk micromachining of the Si cantilever was performed using reactive ion etching with SF6 gas through masks of nLOF 2020 photoresist from the front side and a quartz shadow mask from the back side of the substrate. An etch rate of 6 µmmin−1 for Si was achieved for a power of 300 W of the inductively coupled SF6 plasma. The nanoSQUIDs exhibited non-hysteretic current-voltage characteristics on the cantilever. The estimated spin sensitivity of 48 µB (√Hz)−1 is sufficient for use of such a nanoSQUID as a magnetic field sensor for studying nanoscale objects, with a projected total distance to the object of below 100 nm.
doi_str_mv 10.1088/1361-6668/abda5c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_abda5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustabda5c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b2109ceb45671d6fd396b6d5a2e5cf26f6c425bee2e03b325a91281ea24e9e6e3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l1m6cGwekziz9G2lKKLdCSHJ3GlT22RIZhT_vdNWXOnqwsc5h8uH0DElZ5QUxYhySTMpZTHSptLC7qDBL9pFA1IKnjGSF_voIKUFIZQWnA3Q22W3fMde-7DSdu688zMcamy1b90SPiAm_OnaOX40m9DL83R8nbDRCSoc_IaZ6KoZ4IeQoJmnHi46b1sXfDpEe7VeJjj6uUM0vb15vbrPJk9346uLSWa5EG1mGCWlBZMLeU4rWVe8lEZWQjMQtmayljZnwgAwINxwJnRJWUFBsxxKkMCHiGx3bQwpRahVE91Kxy9FiVrbUWsVaq1Cbe30lZNtxYVGLUIXff-gSl1qFc8VV4QLQnPVVHUfPf0j-u_yN4DQdlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions</title><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Faley, M I ; Bikulov, T I ; Bosboom, V ; Golubov, A A ; Dunin-Borkowski, R E</creator><creatorcontrib>Faley, M I ; Bikulov, T I ; Bosboom, V ; Golubov, A A ; Dunin-Borkowski, R E</creatorcontrib><description>Nanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 × 2 × 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-based nanobridges, which had widths down to 10 nm and were patterned using hydrogen silsesquioxane negative resist. Numerical simulations of the superconducting current and the spatial distribution of the order parameter in the nanobridge JJs and the nanoSQUID, as well as the current-phase relationship in the nanobridge JJs, were performed according to Ginzburg-Landau equations on one-dimensional and two-dimensional grids. Bulk micromachining of the Si cantilever was performed using reactive ion etching with SF6 gas through masks of nLOF 2020 photoresist from the front side and a quartz shadow mask from the back side of the substrate. An etch rate of 6 µmmin−1 for Si was achieved for a power of 300 W of the inductively coupled SF6 plasma. The nanoSQUIDs exhibited non-hysteretic current-voltage characteristics on the cantilever. The estimated spin sensitivity of 48 µB (√Hz)−1 is sufficient for use of such a nanoSQUID as a magnetic field sensor for studying nanoscale objects, with a projected total distance to the object of below 100 nm.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/abda5c</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bulk nanomachining ; cantilever ; Josephson junction ; nanobridge ; nanoSQUID</subject><ispartof>Superconductor science &amp; technology, 2021-03, Vol.34 (3), p.35014</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b2109ceb45671d6fd396b6d5a2e5cf26f6c425bee2e03b325a91281ea24e9e6e3</citedby><cites>FETCH-LOGICAL-c355t-b2109ceb45671d6fd396b6d5a2e5cf26f6c425bee2e03b325a91281ea24e9e6e3</cites><orcidid>0000-0003-2768-2796 ; 0000-0001-5085-5195 ; 0000-0001-8082-0647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/abda5c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Faley, M I</creatorcontrib><creatorcontrib>Bikulov, T I</creatorcontrib><creatorcontrib>Bosboom, V</creatorcontrib><creatorcontrib>Golubov, A A</creatorcontrib><creatorcontrib>Dunin-Borkowski, R E</creatorcontrib><title>Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>Nanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 × 2 × 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-based nanobridges, which had widths down to 10 nm and were patterned using hydrogen silsesquioxane negative resist. Numerical simulations of the superconducting current and the spatial distribution of the order parameter in the nanobridge JJs and the nanoSQUID, as well as the current-phase relationship in the nanobridge JJs, were performed according to Ginzburg-Landau equations on one-dimensional and two-dimensional grids. Bulk micromachining of the Si cantilever was performed using reactive ion etching with SF6 gas through masks of nLOF 2020 photoresist from the front side and a quartz shadow mask from the back side of the substrate. An etch rate of 6 µmmin−1 for Si was achieved for a power of 300 W of the inductively coupled SF6 plasma. The nanoSQUIDs exhibited non-hysteretic current-voltage characteristics on the cantilever. The estimated spin sensitivity of 48 µB (√Hz)−1 is sufficient for use of such a nanoSQUID as a magnetic field sensor for studying nanoscale objects, with a projected total distance to the object of below 100 nm.</description><subject>bulk nanomachining</subject><subject>cantilever</subject><subject>Josephson junction</subject><subject>nanobridge</subject><subject>nanoSQUID</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l1m6cGwekziz9G2lKKLdCSHJ3GlT22RIZhT_vdNWXOnqwsc5h8uH0DElZ5QUxYhySTMpZTHSptLC7qDBL9pFA1IKnjGSF_voIKUFIZQWnA3Q22W3fMde-7DSdu688zMcamy1b90SPiAm_OnaOX40m9DL83R8nbDRCSoc_IaZ6KoZ4IeQoJmnHi46b1sXfDpEe7VeJjj6uUM0vb15vbrPJk9346uLSWa5EG1mGCWlBZMLeU4rWVe8lEZWQjMQtmayljZnwgAwINxwJnRJWUFBsxxKkMCHiGx3bQwpRahVE91Kxy9FiVrbUWsVaq1Cbe30lZNtxYVGLUIXff-gSl1qFc8VV4QLQnPVVHUfPf0j-u_yN4DQdlA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Faley, M I</creator><creator>Bikulov, T I</creator><creator>Bosboom, V</creator><creator>Golubov, A A</creator><creator>Dunin-Borkowski, R E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2768-2796</orcidid><orcidid>https://orcid.org/0000-0001-5085-5195</orcidid><orcidid>https://orcid.org/0000-0001-8082-0647</orcidid></search><sort><creationdate>20210301</creationdate><title>Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions</title><author>Faley, M I ; Bikulov, T I ; Bosboom, V ; Golubov, A A ; Dunin-Borkowski, R E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b2109ceb45671d6fd396b6d5a2e5cf26f6c425bee2e03b325a91281ea24e9e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bulk nanomachining</topic><topic>cantilever</topic><topic>Josephson junction</topic><topic>nanobridge</topic><topic>nanoSQUID</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faley, M I</creatorcontrib><creatorcontrib>Bikulov, T I</creatorcontrib><creatorcontrib>Bosboom, V</creatorcontrib><creatorcontrib>Golubov, A A</creatorcontrib><creatorcontrib>Dunin-Borkowski, R E</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faley, M I</au><au>Bikulov, T I</au><au>Bosboom, V</au><au>Golubov, A A</au><au>Dunin-Borkowski, R E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>34</volume><issue>3</issue><spage>35014</spage><pages>35014-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>Nanometer-scale superconducting quantum interference devices (nanoSQUIDs) were fabricated within a distance of 1 µm from the corners of 2 × 2 × 0.05 mm Si cantilevers that are intended for use in a scanning nanoSQUID microscope. The nanoSQUIDs contained Josephson junctions (JJs) in the form of Nb-based nanobridges, which had widths down to 10 nm and were patterned using hydrogen silsesquioxane negative resist. Numerical simulations of the superconducting current and the spatial distribution of the order parameter in the nanobridge JJs and the nanoSQUID, as well as the current-phase relationship in the nanobridge JJs, were performed according to Ginzburg-Landau equations on one-dimensional and two-dimensional grids. Bulk micromachining of the Si cantilever was performed using reactive ion etching with SF6 gas through masks of nLOF 2020 photoresist from the front side and a quartz shadow mask from the back side of the substrate. An etch rate of 6 µmmin−1 for Si was achieved for a power of 300 W of the inductively coupled SF6 plasma. The nanoSQUIDs exhibited non-hysteretic current-voltage characteristics on the cantilever. The estimated spin sensitivity of 48 µB (√Hz)−1 is sufficient for use of such a nanoSQUID as a magnetic field sensor for studying nanoscale objects, with a projected total distance to the object of below 100 nm.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/abda5c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2768-2796</orcidid><orcidid>https://orcid.org/0000-0001-5085-5195</orcidid><orcidid>https://orcid.org/0000-0001-8082-0647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2021-03, Vol.34 (3), p.35014
issn 0953-2048
1361-6668
language eng
recordid cdi_crossref_primary_10_1088_1361_6668_abda5c
source Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects bulk nanomachining
cantilever
Josephson junction
nanobridge
nanoSQUID
title Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20nanomachining%20of%20cantilevers%20with%20Nb%20nanoSQUIDs%20based%20on%20nanobridge%20Josephson%20junctions&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Faley,%20M%20I&rft.date=2021-03-01&rft.volume=34&rft.issue=3&rft.spage=35014&rft.pages=35014-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/abda5c&rft_dat=%3Ciop_cross%3Esustabda5c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true