Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator

The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2019-10, Vol.32 (12), p.125006
Hauptverfasser: Bergen, Anne, Andersen, Rasmus, Bauer, Markus, Boy, Hermann, Brake, Marcel ter, Brutsaert, Patrick, Bührer, Carsten, Dhallé, Marc, Hansen, Jesper, ten Kate, Herman, Kellers, Jürgen, Krause, Jens, Krooshoop, Erik, Kruse, Christian, Kylling, Hans, Pilas, Martin, Pütz, Hendrik, Rebsdorf, Anders, Reckhard, Michael, Seitz, Eric, Springer, Helmut, Song, Xiaowei, Tzabar, Nir, Wessel, Sander, Wiezoreck, Jan, Winkler, Tiemo, Yagotyntsev, Konstantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 125006
container_title Superconductor science & technology
container_volume 32
creator Bergen, Anne
Andersen, Rasmus
Bauer, Markus
Boy, Hermann
Brake, Marcel ter
Brutsaert, Patrick
Bührer, Carsten
Dhallé, Marc
Hansen, Jesper
ten Kate, Herman
Kellers, Jürgen
Krause, Jens
Krooshoop, Erik
Kruse, Christian
Kylling, Hans
Pilas, Martin
Pütz, Hendrik
Rebsdorf, Anders
Reckhard, Michael
Seitz, Eric
Springer, Helmut
Song, Xiaowei
Tzabar, Nir
Wessel, Sander
Wiezoreck, Jan
Winkler, Tiemo
Yagotyntsev, Konstantin
description The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required >20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with >90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.
doi_str_mv 10.1088/1361-6668/ab48d6
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_ab48d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustab48d6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3j7mJ4Lb52I3JUesnVAqi6C1kN5Oasm5KklL8792l4kmEGQZm3jweP4ROKZlQIuWUckELIYScmrqUVuyh0e9qH42IqnjBSCkP0VFKK0IolZyN0PsNJL_ssOks9l3hPLQWZ0jZd0scHM4fgLchtvYsYedjyvgZrmcLHEMOEbu-DeYTgZ_e8Nb3HkvoIJr-dowOnGkTnPzMMXq9u32ZPRTzxf3j7GpeNCVjuZDWSsMaKC1Y09DalkIowSpTE-mMqZ1S6rIBoKbq89ZMMVOBkkxIYg2Hio8R2fk2MaQUwel19J8mfmlK9EBGDxj0gEHvyPQvF7sXH9Z6FTax6wP-Jz__Q542KWvONB2qIkTotXX8G-vpckk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bergen, Anne ; Andersen, Rasmus ; Bauer, Markus ; Boy, Hermann ; Brake, Marcel ter ; Brutsaert, Patrick ; Bührer, Carsten ; Dhallé, Marc ; Hansen, Jesper ; ten Kate, Herman ; Kellers, Jürgen ; Krause, Jens ; Krooshoop, Erik ; Kruse, Christian ; Kylling, Hans ; Pilas, Martin ; Pütz, Hendrik ; Rebsdorf, Anders ; Reckhard, Michael ; Seitz, Eric ; Springer, Helmut ; Song, Xiaowei ; Tzabar, Nir ; Wessel, Sander ; Wiezoreck, Jan ; Winkler, Tiemo ; Yagotyntsev, Konstantin</creator><creatorcontrib>Bergen, Anne ; Andersen, Rasmus ; Bauer, Markus ; Boy, Hermann ; Brake, Marcel ter ; Brutsaert, Patrick ; Bührer, Carsten ; Dhallé, Marc ; Hansen, Jesper ; ten Kate, Herman ; Kellers, Jürgen ; Krause, Jens ; Krooshoop, Erik ; Kruse, Christian ; Kylling, Hans ; Pilas, Martin ; Pütz, Hendrik ; Rebsdorf, Anders ; Reckhard, Michael ; Seitz, Eric ; Springer, Helmut ; Song, Xiaowei ; Tzabar, Nir ; Wessel, Sander ; Wiezoreck, Jan ; Winkler, Tiemo ; Yagotyntsev, Konstantin</creatorcontrib><description>The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required &gt;20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with &gt;90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ab48d6</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>HTS ; superconducting generator ; superconducting machinery ; wind turbine</subject><ispartof>Superconductor science &amp; technology, 2019-10, Vol.32 (12), p.125006</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</citedby><cites>FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</cites><orcidid>0000-0001-8051-5474 ; 0000-0002-0422-5560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/ab48d6/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Bergen, Anne</creatorcontrib><creatorcontrib>Andersen, Rasmus</creatorcontrib><creatorcontrib>Bauer, Markus</creatorcontrib><creatorcontrib>Boy, Hermann</creatorcontrib><creatorcontrib>Brake, Marcel ter</creatorcontrib><creatorcontrib>Brutsaert, Patrick</creatorcontrib><creatorcontrib>Bührer, Carsten</creatorcontrib><creatorcontrib>Dhallé, Marc</creatorcontrib><creatorcontrib>Hansen, Jesper</creatorcontrib><creatorcontrib>ten Kate, Herman</creatorcontrib><creatorcontrib>Kellers, Jürgen</creatorcontrib><creatorcontrib>Krause, Jens</creatorcontrib><creatorcontrib>Krooshoop, Erik</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Kylling, Hans</creatorcontrib><creatorcontrib>Pilas, Martin</creatorcontrib><creatorcontrib>Pütz, Hendrik</creatorcontrib><creatorcontrib>Rebsdorf, Anders</creatorcontrib><creatorcontrib>Reckhard, Michael</creatorcontrib><creatorcontrib>Seitz, Eric</creatorcontrib><creatorcontrib>Springer, Helmut</creatorcontrib><creatorcontrib>Song, Xiaowei</creatorcontrib><creatorcontrib>Tzabar, Nir</creatorcontrib><creatorcontrib>Wessel, Sander</creatorcontrib><creatorcontrib>Wiezoreck, Jan</creatorcontrib><creatorcontrib>Winkler, Tiemo</creatorcontrib><creatorcontrib>Yagotyntsev, Konstantin</creatorcontrib><title>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required &gt;20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with &gt;90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.</description><subject>HTS</subject><subject>superconducting generator</subject><subject>superconducting machinery</subject><subject>wind turbine</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3j7mJ4Lb52I3JUesnVAqi6C1kN5Oasm5KklL8792l4kmEGQZm3jweP4ROKZlQIuWUckELIYScmrqUVuyh0e9qH42IqnjBSCkP0VFKK0IolZyN0PsNJL_ssOks9l3hPLQWZ0jZd0scHM4fgLchtvYsYedjyvgZrmcLHEMOEbu-DeYTgZ_e8Nb3HkvoIJr-dowOnGkTnPzMMXq9u32ZPRTzxf3j7GpeNCVjuZDWSsMaKC1Y09DalkIowSpTE-mMqZ1S6rIBoKbq89ZMMVOBkkxIYg2Hio8R2fk2MaQUwel19J8mfmlK9EBGDxj0gEHvyPQvF7sXH9Z6FTax6wP-Jz__Q542KWvONB2qIkTotXX8G-vpckk</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Bergen, Anne</creator><creator>Andersen, Rasmus</creator><creator>Bauer, Markus</creator><creator>Boy, Hermann</creator><creator>Brake, Marcel ter</creator><creator>Brutsaert, Patrick</creator><creator>Bührer, Carsten</creator><creator>Dhallé, Marc</creator><creator>Hansen, Jesper</creator><creator>ten Kate, Herman</creator><creator>Kellers, Jürgen</creator><creator>Krause, Jens</creator><creator>Krooshoop, Erik</creator><creator>Kruse, Christian</creator><creator>Kylling, Hans</creator><creator>Pilas, Martin</creator><creator>Pütz, Hendrik</creator><creator>Rebsdorf, Anders</creator><creator>Reckhard, Michael</creator><creator>Seitz, Eric</creator><creator>Springer, Helmut</creator><creator>Song, Xiaowei</creator><creator>Tzabar, Nir</creator><creator>Wessel, Sander</creator><creator>Wiezoreck, Jan</creator><creator>Winkler, Tiemo</creator><creator>Yagotyntsev, Konstantin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8051-5474</orcidid><orcidid>https://orcid.org/0000-0002-0422-5560</orcidid></search><sort><creationdate>20191025</creationdate><title>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</title><author>Bergen, Anne ; Andersen, Rasmus ; Bauer, Markus ; Boy, Hermann ; Brake, Marcel ter ; Brutsaert, Patrick ; Bührer, Carsten ; Dhallé, Marc ; Hansen, Jesper ; ten Kate, Herman ; Kellers, Jürgen ; Krause, Jens ; Krooshoop, Erik ; Kruse, Christian ; Kylling, Hans ; Pilas, Martin ; Pütz, Hendrik ; Rebsdorf, Anders ; Reckhard, Michael ; Seitz, Eric ; Springer, Helmut ; Song, Xiaowei ; Tzabar, Nir ; Wessel, Sander ; Wiezoreck, Jan ; Winkler, Tiemo ; Yagotyntsev, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>HTS</topic><topic>superconducting generator</topic><topic>superconducting machinery</topic><topic>wind turbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergen, Anne</creatorcontrib><creatorcontrib>Andersen, Rasmus</creatorcontrib><creatorcontrib>Bauer, Markus</creatorcontrib><creatorcontrib>Boy, Hermann</creatorcontrib><creatorcontrib>Brake, Marcel ter</creatorcontrib><creatorcontrib>Brutsaert, Patrick</creatorcontrib><creatorcontrib>Bührer, Carsten</creatorcontrib><creatorcontrib>Dhallé, Marc</creatorcontrib><creatorcontrib>Hansen, Jesper</creatorcontrib><creatorcontrib>ten Kate, Herman</creatorcontrib><creatorcontrib>Kellers, Jürgen</creatorcontrib><creatorcontrib>Krause, Jens</creatorcontrib><creatorcontrib>Krooshoop, Erik</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Kylling, Hans</creatorcontrib><creatorcontrib>Pilas, Martin</creatorcontrib><creatorcontrib>Pütz, Hendrik</creatorcontrib><creatorcontrib>Rebsdorf, Anders</creatorcontrib><creatorcontrib>Reckhard, Michael</creatorcontrib><creatorcontrib>Seitz, Eric</creatorcontrib><creatorcontrib>Springer, Helmut</creatorcontrib><creatorcontrib>Song, Xiaowei</creatorcontrib><creatorcontrib>Tzabar, Nir</creatorcontrib><creatorcontrib>Wessel, Sander</creatorcontrib><creatorcontrib>Wiezoreck, Jan</creatorcontrib><creatorcontrib>Winkler, Tiemo</creatorcontrib><creatorcontrib>Yagotyntsev, Konstantin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergen, Anne</au><au>Andersen, Rasmus</au><au>Bauer, Markus</au><au>Boy, Hermann</au><au>Brake, Marcel ter</au><au>Brutsaert, Patrick</au><au>Bührer, Carsten</au><au>Dhallé, Marc</au><au>Hansen, Jesper</au><au>ten Kate, Herman</au><au>Kellers, Jürgen</au><au>Krause, Jens</au><au>Krooshoop, Erik</au><au>Kruse, Christian</au><au>Kylling, Hans</au><au>Pilas, Martin</au><au>Pütz, Hendrik</au><au>Rebsdorf, Anders</au><au>Reckhard, Michael</au><au>Seitz, Eric</au><au>Springer, Helmut</au><au>Song, Xiaowei</au><au>Tzabar, Nir</au><au>Wessel, Sander</au><au>Wiezoreck, Jan</au><au>Winkler, Tiemo</au><au>Yagotyntsev, Konstantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2019-10-25</date><risdate>2019</risdate><volume>32</volume><issue>12</issue><spage>125006</spage><pages>125006-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required &gt;20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with &gt;90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/ab48d6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8051-5474</orcidid><orcidid>https://orcid.org/0000-0002-0422-5560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2019-10, Vol.32 (12), p.125006
issn 0953-2048
1361-6668
language eng
recordid cdi_crossref_primary_10_1088_1361_6668_ab48d6
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects HTS
superconducting generator
superconducting machinery
wind turbine
title Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20in-field%20testing%20of%20the%20world's%20first%20ReBCO%20rotor%20for%20a%203.6%20MW%20wind%20generator&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Bergen,%20Anne&rft.date=2019-10-25&rft.volume=32&rft.issue=12&rft.spage=125006&rft.pages=125006-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/ab48d6&rft_dat=%3Ciop_cross%3Esustab48d6%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true