Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator
The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3...
Gespeichert in:
Veröffentlicht in: | Superconductor science & technology 2019-10, Vol.32 (12), p.125006 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125006 |
container_title | Superconductor science & technology |
container_volume | 32 |
creator | Bergen, Anne Andersen, Rasmus Bauer, Markus Boy, Hermann Brake, Marcel ter Brutsaert, Patrick Bührer, Carsten Dhallé, Marc Hansen, Jesper ten Kate, Herman Kellers, Jürgen Krause, Jens Krooshoop, Erik Kruse, Christian Kylling, Hans Pilas, Martin Pütz, Hendrik Rebsdorf, Anders Reckhard, Michael Seitz, Eric Springer, Helmut Song, Xiaowei Tzabar, Nir Wessel, Sander Wiezoreck, Jan Winkler, Tiemo Yagotyntsev, Konstantin |
description | The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required >20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with >90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation. |
doi_str_mv | 10.1088/1361-6668/ab48d6 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_ab48d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustab48d6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3j7mJ4Lb52I3JUesnVAqi6C1kN5Oasm5KklL8792l4kmEGQZm3jweP4ROKZlQIuWUckELIYScmrqUVuyh0e9qH42IqnjBSCkP0VFKK0IolZyN0PsNJL_ssOks9l3hPLQWZ0jZd0scHM4fgLchtvYsYedjyvgZrmcLHEMOEbu-DeYTgZ_e8Nb3HkvoIJr-dowOnGkTnPzMMXq9u32ZPRTzxf3j7GpeNCVjuZDWSsMaKC1Y09DalkIowSpTE-mMqZ1S6rIBoKbq89ZMMVOBkkxIYg2Hio8R2fk2MaQUwel19J8mfmlK9EBGDxj0gEHvyPQvF7sXH9Z6FTax6wP-Jz__Q542KWvONB2qIkTotXX8G-vpckk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bergen, Anne ; Andersen, Rasmus ; Bauer, Markus ; Boy, Hermann ; Brake, Marcel ter ; Brutsaert, Patrick ; Bührer, Carsten ; Dhallé, Marc ; Hansen, Jesper ; ten Kate, Herman ; Kellers, Jürgen ; Krause, Jens ; Krooshoop, Erik ; Kruse, Christian ; Kylling, Hans ; Pilas, Martin ; Pütz, Hendrik ; Rebsdorf, Anders ; Reckhard, Michael ; Seitz, Eric ; Springer, Helmut ; Song, Xiaowei ; Tzabar, Nir ; Wessel, Sander ; Wiezoreck, Jan ; Winkler, Tiemo ; Yagotyntsev, Konstantin</creator><creatorcontrib>Bergen, Anne ; Andersen, Rasmus ; Bauer, Markus ; Boy, Hermann ; Brake, Marcel ter ; Brutsaert, Patrick ; Bührer, Carsten ; Dhallé, Marc ; Hansen, Jesper ; ten Kate, Herman ; Kellers, Jürgen ; Krause, Jens ; Krooshoop, Erik ; Kruse, Christian ; Kylling, Hans ; Pilas, Martin ; Pütz, Hendrik ; Rebsdorf, Anders ; Reckhard, Michael ; Seitz, Eric ; Springer, Helmut ; Song, Xiaowei ; Tzabar, Nir ; Wessel, Sander ; Wiezoreck, Jan ; Winkler, Tiemo ; Yagotyntsev, Konstantin</creatorcontrib><description>The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required >20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with >90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ab48d6</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>HTS ; superconducting generator ; superconducting machinery ; wind turbine</subject><ispartof>Superconductor science & technology, 2019-10, Vol.32 (12), p.125006</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</citedby><cites>FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</cites><orcidid>0000-0001-8051-5474 ; 0000-0002-0422-5560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/ab48d6/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Bergen, Anne</creatorcontrib><creatorcontrib>Andersen, Rasmus</creatorcontrib><creatorcontrib>Bauer, Markus</creatorcontrib><creatorcontrib>Boy, Hermann</creatorcontrib><creatorcontrib>Brake, Marcel ter</creatorcontrib><creatorcontrib>Brutsaert, Patrick</creatorcontrib><creatorcontrib>Bührer, Carsten</creatorcontrib><creatorcontrib>Dhallé, Marc</creatorcontrib><creatorcontrib>Hansen, Jesper</creatorcontrib><creatorcontrib>ten Kate, Herman</creatorcontrib><creatorcontrib>Kellers, Jürgen</creatorcontrib><creatorcontrib>Krause, Jens</creatorcontrib><creatorcontrib>Krooshoop, Erik</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Kylling, Hans</creatorcontrib><creatorcontrib>Pilas, Martin</creatorcontrib><creatorcontrib>Pütz, Hendrik</creatorcontrib><creatorcontrib>Rebsdorf, Anders</creatorcontrib><creatorcontrib>Reckhard, Michael</creatorcontrib><creatorcontrib>Seitz, Eric</creatorcontrib><creatorcontrib>Springer, Helmut</creatorcontrib><creatorcontrib>Song, Xiaowei</creatorcontrib><creatorcontrib>Tzabar, Nir</creatorcontrib><creatorcontrib>Wessel, Sander</creatorcontrib><creatorcontrib>Wiezoreck, Jan</creatorcontrib><creatorcontrib>Winkler, Tiemo</creatorcontrib><creatorcontrib>Yagotyntsev, Konstantin</creatorcontrib><title>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</title><title>Superconductor science & technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required >20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with >90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.</description><subject>HTS</subject><subject>superconducting generator</subject><subject>superconducting machinery</subject><subject>wind turbine</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kM1LAzEQxYMoWKt3j7mJ4Lb52I3JUesnVAqi6C1kN5Oasm5KklL8792l4kmEGQZm3jweP4ROKZlQIuWUckELIYScmrqUVuyh0e9qH42IqnjBSCkP0VFKK0IolZyN0PsNJL_ssOks9l3hPLQWZ0jZd0scHM4fgLchtvYsYedjyvgZrmcLHEMOEbu-DeYTgZ_e8Nb3HkvoIJr-dowOnGkTnPzMMXq9u32ZPRTzxf3j7GpeNCVjuZDWSsMaKC1Y09DalkIowSpTE-mMqZ1S6rIBoKbq89ZMMVOBkkxIYg2Hio8R2fk2MaQUwel19J8mfmlK9EBGDxj0gEHvyPQvF7sXH9Z6FTax6wP-Jz__Q542KWvONB2qIkTotXX8G-vpckk</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Bergen, Anne</creator><creator>Andersen, Rasmus</creator><creator>Bauer, Markus</creator><creator>Boy, Hermann</creator><creator>Brake, Marcel ter</creator><creator>Brutsaert, Patrick</creator><creator>Bührer, Carsten</creator><creator>Dhallé, Marc</creator><creator>Hansen, Jesper</creator><creator>ten Kate, Herman</creator><creator>Kellers, Jürgen</creator><creator>Krause, Jens</creator><creator>Krooshoop, Erik</creator><creator>Kruse, Christian</creator><creator>Kylling, Hans</creator><creator>Pilas, Martin</creator><creator>Pütz, Hendrik</creator><creator>Rebsdorf, Anders</creator><creator>Reckhard, Michael</creator><creator>Seitz, Eric</creator><creator>Springer, Helmut</creator><creator>Song, Xiaowei</creator><creator>Tzabar, Nir</creator><creator>Wessel, Sander</creator><creator>Wiezoreck, Jan</creator><creator>Winkler, Tiemo</creator><creator>Yagotyntsev, Konstantin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8051-5474</orcidid><orcidid>https://orcid.org/0000-0002-0422-5560</orcidid></search><sort><creationdate>20191025</creationdate><title>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</title><author>Bergen, Anne ; Andersen, Rasmus ; Bauer, Markus ; Boy, Hermann ; Brake, Marcel ter ; Brutsaert, Patrick ; Bührer, Carsten ; Dhallé, Marc ; Hansen, Jesper ; ten Kate, Herman ; Kellers, Jürgen ; Krause, Jens ; Krooshoop, Erik ; Kruse, Christian ; Kylling, Hans ; Pilas, Martin ; Pütz, Hendrik ; Rebsdorf, Anders ; Reckhard, Michael ; Seitz, Eric ; Springer, Helmut ; Song, Xiaowei ; Tzabar, Nir ; Wessel, Sander ; Wiezoreck, Jan ; Winkler, Tiemo ; Yagotyntsev, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-8dd8a2ce4dedac1bd4669625ab08faabf9997cee1a5832b292a5e982680da3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>HTS</topic><topic>superconducting generator</topic><topic>superconducting machinery</topic><topic>wind turbine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergen, Anne</creatorcontrib><creatorcontrib>Andersen, Rasmus</creatorcontrib><creatorcontrib>Bauer, Markus</creatorcontrib><creatorcontrib>Boy, Hermann</creatorcontrib><creatorcontrib>Brake, Marcel ter</creatorcontrib><creatorcontrib>Brutsaert, Patrick</creatorcontrib><creatorcontrib>Bührer, Carsten</creatorcontrib><creatorcontrib>Dhallé, Marc</creatorcontrib><creatorcontrib>Hansen, Jesper</creatorcontrib><creatorcontrib>ten Kate, Herman</creatorcontrib><creatorcontrib>Kellers, Jürgen</creatorcontrib><creatorcontrib>Krause, Jens</creatorcontrib><creatorcontrib>Krooshoop, Erik</creatorcontrib><creatorcontrib>Kruse, Christian</creatorcontrib><creatorcontrib>Kylling, Hans</creatorcontrib><creatorcontrib>Pilas, Martin</creatorcontrib><creatorcontrib>Pütz, Hendrik</creatorcontrib><creatorcontrib>Rebsdorf, Anders</creatorcontrib><creatorcontrib>Reckhard, Michael</creatorcontrib><creatorcontrib>Seitz, Eric</creatorcontrib><creatorcontrib>Springer, Helmut</creatorcontrib><creatorcontrib>Song, Xiaowei</creatorcontrib><creatorcontrib>Tzabar, Nir</creatorcontrib><creatorcontrib>Wessel, Sander</creatorcontrib><creatorcontrib>Wiezoreck, Jan</creatorcontrib><creatorcontrib>Winkler, Tiemo</creatorcontrib><creatorcontrib>Yagotyntsev, Konstantin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Superconductor science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergen, Anne</au><au>Andersen, Rasmus</au><au>Bauer, Markus</au><au>Boy, Hermann</au><au>Brake, Marcel ter</au><au>Brutsaert, Patrick</au><au>Bührer, Carsten</au><au>Dhallé, Marc</au><au>Hansen, Jesper</au><au>ten Kate, Herman</au><au>Kellers, Jürgen</au><au>Krause, Jens</au><au>Krooshoop, Erik</au><au>Kruse, Christian</au><au>Kylling, Hans</au><au>Pilas, Martin</au><au>Pütz, Hendrik</au><au>Rebsdorf, Anders</au><au>Reckhard, Michael</au><au>Seitz, Eric</au><au>Springer, Helmut</au><au>Song, Xiaowei</au><au>Tzabar, Nir</au><au>Wessel, Sander</au><au>Wiezoreck, Jan</au><au>Winkler, Tiemo</au><au>Yagotyntsev, Konstantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator</atitle><jtitle>Superconductor science & technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2019-10-25</date><risdate>2019</risdate><volume>32</volume><issue>12</issue><spage>125006</spage><pages>125006-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>The main aim of the EU H2020 project EcoSwing was to demonstrate a technical readiness level of 6-7 for high-temperature superconducting (HTS) technology operating in a wind generator. To reach this goal, a full-scale synchronous HTS generator was successfully designed, built and field-tested in a 3.6 MW turbine. The generator has a rotor with 40 superconducting coils of 1.4 m long. The required >20 km of coated conductor was produced within the project's time schedule. All coils were tested prior to assembly, with >90% of them behaving as expected. The technical readiness level of HTS coils was thus increased to level 7. Simultaneously, the maturing of cryogenic cooling technology over the last decade was illustrated by the several Gifford-McMahon cold-heads that were installed on-board the rotor and connected with the stationary compressors through a rotating coupling. The cryogenic system outperformed design expectations, enabling stable coil temperatures far below the design temperature of 30 K after only 14 d of cool-down. After ground-based testing at the IWES facility in Bremerhaven, Germany, the generator was installed on an existing turbine in Thyborøn, Denmark. Here, the generator reached the target power range and produced power for over 650 h of grid operation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/ab48d6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8051-5474</orcidid><orcidid>https://orcid.org/0000-0002-0422-5560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-2048 |
ispartof | Superconductor science & technology, 2019-10, Vol.32 (12), p.125006 |
issn | 0953-2048 1361-6668 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6668_ab48d6 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | HTS superconducting generator superconducting machinery wind turbine |
title | Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20in-field%20testing%20of%20the%20world's%20first%20ReBCO%20rotor%20for%20a%203.6%20MW%20wind%20generator&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Bergen,%20Anne&rft.date=2019-10-25&rft.volume=32&rft.issue=12&rft.spage=125006&rft.pages=125006-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/ab48d6&rft_dat=%3Ciop_cross%3Esustab48d6%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |