SQUID microscopy for mapping vector magnetic fields

We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor science & technology 2019-11, Vol.32 (11), p.115006
Hauptverfasser: Vu, The Dang, Ho, Thanh Huy, Miyajima, Shigeyuki, Toji, Masaki, Ninomiya, Yoshitsugu, Shishido, Hiroaki, Maezawa, Masaaki, Hidaka, Mutsuo, Hayashi, Masahiko, Kawamata, Shuichi, Ishida, Takekazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115006
container_title Superconductor science & technology
container_volume 32
creator Vu, The Dang
Ho, Thanh Huy
Miyajima, Shigeyuki
Toji, Masaki
Ninomiya, Yoshitsugu
Shishido, Hiroaki
Maezawa, Masaaki
Hidaka, Mutsuo
Hayashi, Masahiko
Kawamata, Shuichi
Ishida, Takekazu
description We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.
doi_str_mv 10.1088/1361-6668/ab3945
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_ab3945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustab3945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</originalsourceid><addsrcrecordid>eNp9j81Lw0AQxRdRMFbvHnMVjJ3Zr-wepX4VCiLa87JJdsuW5oNsKvS_N7HiSYSB4Q3vDe9HyDXCHYJSc2QSMymlmtuCaS5OSPJ7OiUJaMEyClydk4sYtwCIitGEsPe39fIhrUPZt7Fsu0Pq2z6tbdeFZpN-unL4lpvGDaFMfXC7Kl6SM2930V397BlZPz1-LF6y1evzcnG_ykqGfMiUVV44qbHQ3irOhfBauwJQOMeVRNCa5ihVPmrKnFOOe6ZzUEAtraBgMwLHv1O32Dtvuj7Utj8YBDNBm4nQTITmCD1Gbo-R0HZm2-77Ziz4n_3mD3vcx8EwahDHEQDSdJVnX_JuZH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SQUID microscopy for mapping vector magnetic fields</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vu, The Dang ; Ho, Thanh Huy ; Miyajima, Shigeyuki ; Toji, Masaki ; Ninomiya, Yoshitsugu ; Shishido, Hiroaki ; Maezawa, Masaaki ; Hidaka, Mutsuo ; Hayashi, Masahiko ; Kawamata, Shuichi ; Ishida, Takekazu</creator><creatorcontrib>Vu, The Dang ; Ho, Thanh Huy ; Miyajima, Shigeyuki ; Toji, Masaki ; Ninomiya, Yoshitsugu ; Shishido, Hiroaki ; Maezawa, Masaaki ; Hidaka, Mutsuo ; Hayashi, Masahiko ; Kawamata, Shuichi ; Ishida, Takekazu</creatorcontrib><description>We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ab3945</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>magnetic field vector ; one-chip sensor ; scanning SQUID microscopy ; SQUID</subject><ispartof>Superconductor science &amp; technology, 2019-11, Vol.32 (11), p.115006</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</citedby><cites>FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</cites><orcidid>0000-0002-9629-5178 ; 0000-0002-5153-5537 ; 0000-0003-2196-6827 ; 0000-0002-2579-4164 ; 0000-0002-6693-8881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/ab3945/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Vu, The Dang</creatorcontrib><creatorcontrib>Ho, Thanh Huy</creatorcontrib><creatorcontrib>Miyajima, Shigeyuki</creatorcontrib><creatorcontrib>Toji, Masaki</creatorcontrib><creatorcontrib>Ninomiya, Yoshitsugu</creatorcontrib><creatorcontrib>Shishido, Hiroaki</creatorcontrib><creatorcontrib>Maezawa, Masaaki</creatorcontrib><creatorcontrib>Hidaka, Mutsuo</creatorcontrib><creatorcontrib>Hayashi, Masahiko</creatorcontrib><creatorcontrib>Kawamata, Shuichi</creatorcontrib><creatorcontrib>Ishida, Takekazu</creatorcontrib><title>SQUID microscopy for mapping vector magnetic fields</title><title>Superconductor science &amp; technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.</description><subject>magnetic field vector</subject><subject>one-chip sensor</subject><subject>scanning SQUID microscopy</subject><subject>SQUID</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j81Lw0AQxRdRMFbvHnMVjJ3Zr-wepX4VCiLa87JJdsuW5oNsKvS_N7HiSYSB4Q3vDe9HyDXCHYJSc2QSMymlmtuCaS5OSPJ7OiUJaMEyClydk4sYtwCIitGEsPe39fIhrUPZt7Fsu0Pq2z6tbdeFZpN-unL4lpvGDaFMfXC7Kl6SM2930V397BlZPz1-LF6y1evzcnG_ykqGfMiUVV44qbHQ3irOhfBauwJQOMeVRNCa5ihVPmrKnFOOe6ZzUEAtraBgMwLHv1O32Dtvuj7Utj8YBDNBm4nQTITmCD1Gbo-R0HZm2-77Ziz4n_3mD3vcx8EwahDHEQDSdJVnX_JuZH0</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Vu, The Dang</creator><creator>Ho, Thanh Huy</creator><creator>Miyajima, Shigeyuki</creator><creator>Toji, Masaki</creator><creator>Ninomiya, Yoshitsugu</creator><creator>Shishido, Hiroaki</creator><creator>Maezawa, Masaaki</creator><creator>Hidaka, Mutsuo</creator><creator>Hayashi, Masahiko</creator><creator>Kawamata, Shuichi</creator><creator>Ishida, Takekazu</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9629-5178</orcidid><orcidid>https://orcid.org/0000-0002-5153-5537</orcidid><orcidid>https://orcid.org/0000-0003-2196-6827</orcidid><orcidid>https://orcid.org/0000-0002-2579-4164</orcidid><orcidid>https://orcid.org/0000-0002-6693-8881</orcidid></search><sort><creationdate>20191101</creationdate><title>SQUID microscopy for mapping vector magnetic fields</title><author>Vu, The Dang ; Ho, Thanh Huy ; Miyajima, Shigeyuki ; Toji, Masaki ; Ninomiya, Yoshitsugu ; Shishido, Hiroaki ; Maezawa, Masaaki ; Hidaka, Mutsuo ; Hayashi, Masahiko ; Kawamata, Shuichi ; Ishida, Takekazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>magnetic field vector</topic><topic>one-chip sensor</topic><topic>scanning SQUID microscopy</topic><topic>SQUID</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, The Dang</creatorcontrib><creatorcontrib>Ho, Thanh Huy</creatorcontrib><creatorcontrib>Miyajima, Shigeyuki</creatorcontrib><creatorcontrib>Toji, Masaki</creatorcontrib><creatorcontrib>Ninomiya, Yoshitsugu</creatorcontrib><creatorcontrib>Shishido, Hiroaki</creatorcontrib><creatorcontrib>Maezawa, Masaaki</creatorcontrib><creatorcontrib>Hidaka, Mutsuo</creatorcontrib><creatorcontrib>Hayashi, Masahiko</creatorcontrib><creatorcontrib>Kawamata, Shuichi</creatorcontrib><creatorcontrib>Ishida, Takekazu</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, The Dang</au><au>Ho, Thanh Huy</au><au>Miyajima, Shigeyuki</au><au>Toji, Masaki</au><au>Ninomiya, Yoshitsugu</au><au>Shishido, Hiroaki</au><au>Maezawa, Masaaki</au><au>Hidaka, Mutsuo</au><au>Hayashi, Masahiko</au><au>Kawamata, Shuichi</au><au>Ishida, Takekazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SQUID microscopy for mapping vector magnetic fields</atitle><jtitle>Superconductor science &amp; technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>32</volume><issue>11</issue><spage>115006</spage><pages>115006-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/ab3945</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9629-5178</orcidid><orcidid>https://orcid.org/0000-0002-5153-5537</orcidid><orcidid>https://orcid.org/0000-0003-2196-6827</orcidid><orcidid>https://orcid.org/0000-0002-2579-4164</orcidid><orcidid>https://orcid.org/0000-0002-6693-8881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-2048
ispartof Superconductor science & technology, 2019-11, Vol.32 (11), p.115006
issn 0953-2048
1361-6668
language eng
recordid cdi_crossref_primary_10_1088_1361_6668_ab3945
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects magnetic field vector
one-chip sensor
scanning SQUID microscopy
SQUID
title SQUID microscopy for mapping vector magnetic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SQUID%20microscopy%20for%20mapping%20vector%20magnetic%20fields&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Vu,%20The%20Dang&rft.date=2019-11-01&rft.volume=32&rft.issue=11&rft.spage=115006&rft.pages=115006-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/ab3945&rft_dat=%3Ciop_cross%3Esustab3945%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true