SQUID microscopy for mapping vector magnetic fields
We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized th...
Gespeichert in:
Veröffentlicht in: | Superconductor science & technology 2019-11, Vol.32 (11), p.115006 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115006 |
container_title | Superconductor science & technology |
container_volume | 32 |
creator | Vu, The Dang Ho, Thanh Huy Miyajima, Shigeyuki Toji, Masaki Ninomiya, Yoshitsugu Shishido, Hiroaki Maezawa, Masaaki Hidaka, Mutsuo Hayashi, Masahiko Kawamata, Shuichi Ishida, Takekazu |
description | We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field. |
doi_str_mv | 10.1088/1361-6668/ab3945 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6668_ab3945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sustab3945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</originalsourceid><addsrcrecordid>eNp9j81Lw0AQxRdRMFbvHnMVjJ3Zr-wepX4VCiLa87JJdsuW5oNsKvS_N7HiSYSB4Q3vDe9HyDXCHYJSc2QSMymlmtuCaS5OSPJ7OiUJaMEyClydk4sYtwCIitGEsPe39fIhrUPZt7Fsu0Pq2z6tbdeFZpN-unL4lpvGDaFMfXC7Kl6SM2930V397BlZPz1-LF6y1evzcnG_ykqGfMiUVV44qbHQ3irOhfBauwJQOMeVRNCa5ihVPmrKnFOOe6ZzUEAtraBgMwLHv1O32Dtvuj7Utj8YBDNBm4nQTITmCD1Gbo-R0HZm2-77Ziz4n_3mD3vcx8EwahDHEQDSdJVnX_JuZH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SQUID microscopy for mapping vector magnetic fields</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Vu, The Dang ; Ho, Thanh Huy ; Miyajima, Shigeyuki ; Toji, Masaki ; Ninomiya, Yoshitsugu ; Shishido, Hiroaki ; Maezawa, Masaaki ; Hidaka, Mutsuo ; Hayashi, Masahiko ; Kawamata, Shuichi ; Ishida, Takekazu</creator><creatorcontrib>Vu, The Dang ; Ho, Thanh Huy ; Miyajima, Shigeyuki ; Toji, Masaki ; Ninomiya, Yoshitsugu ; Shishido, Hiroaki ; Maezawa, Masaaki ; Hidaka, Mutsuo ; Hayashi, Masahiko ; Kawamata, Shuichi ; Ishida, Takekazu</creatorcontrib><description>We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.</description><identifier>ISSN: 0953-2048</identifier><identifier>EISSN: 1361-6668</identifier><identifier>DOI: 10.1088/1361-6668/ab3945</identifier><identifier>CODEN: SUSTEF</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>magnetic field vector ; one-chip sensor ; scanning SQUID microscopy ; SQUID</subject><ispartof>Superconductor science & technology, 2019-11, Vol.32 (11), p.115006</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</citedby><cites>FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</cites><orcidid>0000-0002-9629-5178 ; 0000-0002-5153-5537 ; 0000-0003-2196-6827 ; 0000-0002-2579-4164 ; 0000-0002-6693-8881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6668/ab3945/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Vu, The Dang</creatorcontrib><creatorcontrib>Ho, Thanh Huy</creatorcontrib><creatorcontrib>Miyajima, Shigeyuki</creatorcontrib><creatorcontrib>Toji, Masaki</creatorcontrib><creatorcontrib>Ninomiya, Yoshitsugu</creatorcontrib><creatorcontrib>Shishido, Hiroaki</creatorcontrib><creatorcontrib>Maezawa, Masaaki</creatorcontrib><creatorcontrib>Hidaka, Mutsuo</creatorcontrib><creatorcontrib>Hayashi, Masahiko</creatorcontrib><creatorcontrib>Kawamata, Shuichi</creatorcontrib><creatorcontrib>Ishida, Takekazu</creatorcontrib><title>SQUID microscopy for mapping vector magnetic fields</title><title>Superconductor science & technology</title><addtitle>SUST</addtitle><addtitle>Supercond. Sci. Technol</addtitle><description>We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.</description><subject>magnetic field vector</subject><subject>one-chip sensor</subject><subject>scanning SQUID microscopy</subject><subject>SQUID</subject><issn>0953-2048</issn><issn>1361-6668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j81Lw0AQxRdRMFbvHnMVjJ3Zr-wepX4VCiLa87JJdsuW5oNsKvS_N7HiSYSB4Q3vDe9HyDXCHYJSc2QSMymlmtuCaS5OSPJ7OiUJaMEyClydk4sYtwCIitGEsPe39fIhrUPZt7Fsu0Pq2z6tbdeFZpN-unL4lpvGDaFMfXC7Kl6SM2930V397BlZPz1-LF6y1evzcnG_ykqGfMiUVV44qbHQ3irOhfBauwJQOMeVRNCa5ihVPmrKnFOOe6ZzUEAtraBgMwLHv1O32Dtvuj7Utj8YBDNBm4nQTITmCD1Gbo-R0HZm2-77Ziz4n_3mD3vcx8EwahDHEQDSdJVnX_JuZH0</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Vu, The Dang</creator><creator>Ho, Thanh Huy</creator><creator>Miyajima, Shigeyuki</creator><creator>Toji, Masaki</creator><creator>Ninomiya, Yoshitsugu</creator><creator>Shishido, Hiroaki</creator><creator>Maezawa, Masaaki</creator><creator>Hidaka, Mutsuo</creator><creator>Hayashi, Masahiko</creator><creator>Kawamata, Shuichi</creator><creator>Ishida, Takekazu</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9629-5178</orcidid><orcidid>https://orcid.org/0000-0002-5153-5537</orcidid><orcidid>https://orcid.org/0000-0003-2196-6827</orcidid><orcidid>https://orcid.org/0000-0002-2579-4164</orcidid><orcidid>https://orcid.org/0000-0002-6693-8881</orcidid></search><sort><creationdate>20191101</creationdate><title>SQUID microscopy for mapping vector magnetic fields</title><author>Vu, The Dang ; Ho, Thanh Huy ; Miyajima, Shigeyuki ; Toji, Masaki ; Ninomiya, Yoshitsugu ; Shishido, Hiroaki ; Maezawa, Masaaki ; Hidaka, Mutsuo ; Hayashi, Masahiko ; Kawamata, Shuichi ; Ishida, Takekazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8a8f5e691b9fa84455f99eb015ee48610992716875ee23ee8e4f3970802a2d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>magnetic field vector</topic><topic>one-chip sensor</topic><topic>scanning SQUID microscopy</topic><topic>SQUID</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, The Dang</creatorcontrib><creatorcontrib>Ho, Thanh Huy</creatorcontrib><creatorcontrib>Miyajima, Shigeyuki</creatorcontrib><creatorcontrib>Toji, Masaki</creatorcontrib><creatorcontrib>Ninomiya, Yoshitsugu</creatorcontrib><creatorcontrib>Shishido, Hiroaki</creatorcontrib><creatorcontrib>Maezawa, Masaaki</creatorcontrib><creatorcontrib>Hidaka, Mutsuo</creatorcontrib><creatorcontrib>Hayashi, Masahiko</creatorcontrib><creatorcontrib>Kawamata, Shuichi</creatorcontrib><creatorcontrib>Ishida, Takekazu</creatorcontrib><collection>CrossRef</collection><jtitle>Superconductor science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, The Dang</au><au>Ho, Thanh Huy</au><au>Miyajima, Shigeyuki</au><au>Toji, Masaki</au><au>Ninomiya, Yoshitsugu</au><au>Shishido, Hiroaki</au><au>Maezawa, Masaaki</au><au>Hidaka, Mutsuo</au><au>Hayashi, Masahiko</au><au>Kawamata, Shuichi</au><au>Ishida, Takekazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SQUID microscopy for mapping vector magnetic fields</atitle><jtitle>Superconductor science & technology</jtitle><stitle>SUST</stitle><addtitle>Supercond. Sci. Technol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>32</volume><issue>11</issue><spage>115006</spage><pages>115006-</pages><issn>0953-2048</issn><eissn>1361-6668</eissn><coden>SUSTEF</coden><abstract>We mounted a vector-scanning superconducting quantum interference device (SQUID) sensor on a commercial SQUID microscope and successfully improved the sensitivity and spatial resolution of the sensor. Our proposed vector 3D SQUID sensor used multilayered niobium (Nb)-based technology; we realized three SQUID sensors in the structure of a vector pickup coil system on a single chip. The vector pickup coil system was built with three pickup coils that were orthogonal to one another to obtain the X, Y, and Z components of a magnetic field vector. To improve both sensitivity and spatial resolution, we attempted to reduce the inner diameter by increasing the number of windings of the pickup coils using the multilayered Nb process. The design value for the dc SQUID sensors was either the critical current density Jc = 320 A cm−2 for two Josephson junctions (JJs) or the critical current Ic = 12.8 A for the 2 m × 2 m JJs. To measure the current-voltage (I-V) and voltage-flux (V-Φ) characteristics of a sensor, we constructed a homemade measurement system. The fundamental characteristics of our SQUID sensors were in good agreement with the design parameters. We mounted our vector SQUID sensor on a commercial scanning SQUID microscope (SQM2000, Seiko Instrument Inc.) with a single flux-locked loop channel to test one of the three channels. We repeated the measurements three times to obtain the X, Y, and Z componential images of the magnetic field from a single vortex, and we synthesized the 3D mapping of the magnetic field vectors from a single vortex. We proved that our sensor mounted on a SQUID microscope was suitable for measuring the X, Y, and Z components of a vector magnetic field.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6668/ab3945</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9629-5178</orcidid><orcidid>https://orcid.org/0000-0002-5153-5537</orcidid><orcidid>https://orcid.org/0000-0003-2196-6827</orcidid><orcidid>https://orcid.org/0000-0002-2579-4164</orcidid><orcidid>https://orcid.org/0000-0002-6693-8881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-2048 |
ispartof | Superconductor science & technology, 2019-11, Vol.32 (11), p.115006 |
issn | 0953-2048 1361-6668 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6668_ab3945 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | magnetic field vector one-chip sensor scanning SQUID microscopy SQUID |
title | SQUID microscopy for mapping vector magnetic fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SQUID%20microscopy%20for%20mapping%20vector%20magnetic%20fields&rft.jtitle=Superconductor%20science%20&%20technology&rft.au=Vu,%20The%20Dang&rft.date=2019-11-01&rft.volume=32&rft.issue=11&rft.spage=115006&rft.pages=115006-&rft.issn=0953-2048&rft.eissn=1361-6668&rft.coden=SUSTEF&rft_id=info:doi/10.1088/1361-6668/ab3945&rft_dat=%3Ciop_cross%3Esustab3945%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |