Data-driven design and optimization of ultra-tunable acoustic metamaterials

This paper presents a data-driven design and optimization of acoustic metamaterials with three-phase materials for highly tunable wave transmission. The geometry of representative unitcell is defined by the trigonometric series function to describe an arbitrary shape with symmetry, which enables the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2023-05, Vol.32 (5), p.5
Hauptverfasser: Huo, Jindong, Wang, Yifei, Wang, Ningzhen, Gao, Wenqiang, Zhou, Jierui, Cao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 5
container_title Smart materials and structures
container_volume 32
creator Huo, Jindong
Wang, Yifei
Wang, Ningzhen
Gao, Wenqiang
Zhou, Jierui
Cao, Yang
description This paper presents a data-driven design and optimization of acoustic metamaterials with three-phase materials for highly tunable wave transmission. The geometry of representative unitcell is defined by the trigonometric series function to describe an arbitrary shape with symmetry, which enables the unitcell to achieve a large sub-wavelength bandgap. We propose a lightweight and efficient algorithm, ‘decoupled gradient decent (DGD)’, to search for the optimal design and uncover the ‘best’ shape features—the interface curvature—in tuning the wave transmission. As a result, the host composite can partly overlap the individual cell’s bandgap and achieve a wide frequency gap that forbids wave transmission, namely a passive tunability. Another advantage of the trigonometric series designed shape is the high flexibility. A slight surface pressure obviously deforms the unitcell and shifts its band structure. Our simulation shows that a moderate pressure dramatically changes the frequency forbidding gap for both traversal and longitudinal wave transmissions, which indicates an active tunability. The surface deformation can be applied by either a mechanical pressure or external electric field if the composite uses a dielectric substrate. Therefore, this study opens a sandbox of manipulating wave transmission through the topology and structure optimization in applications such as seismic damping (Hz), noise insulating (kHz) and ultrasound imaging (MHz).
doi_str_mv 10.1088/1361-665X/acc36c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_acc36c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsacc36c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-486749b9e3ddf1d84c4331c7f8cd24d4863089fe73b9323d51bf3280d3d1fec43</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEf3LvMDjJPbdNJ0KeMTB9wouAtpHpKhbUqSCvrrbRlx5-rAvee73HMQugR6DVSINTAOhPPN-1ppzbg-QsXf6BgVtOEVgbrkp-gspT2lAIJBgZ5vVVbERP9pB2xs8h8DVoPBYcy-998q-zDg4PDU5ahIngbVdhYrHaaUvca9zapX2UavunSOTtws9uJXV-jt_u51-0h2Lw9P25sd0aWgmVSC11XTNpYZ48CISleMga6d0KaszLxmVDTO1qxtWMnMBlrHZtIwA87O5hWih7s6hpSidXKMvlfxSwKVSxlySS6X5PJQxoxcHRAfRrkPUxzmB_-3_wAS-GJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven design and optimization of ultra-tunable acoustic metamaterials</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Huo, Jindong ; Wang, Yifei ; Wang, Ningzhen ; Gao, Wenqiang ; Zhou, Jierui ; Cao, Yang</creator><creatorcontrib>Huo, Jindong ; Wang, Yifei ; Wang, Ningzhen ; Gao, Wenqiang ; Zhou, Jierui ; Cao, Yang</creatorcontrib><description>This paper presents a data-driven design and optimization of acoustic metamaterials with three-phase materials for highly tunable wave transmission. The geometry of representative unitcell is defined by the trigonometric series function to describe an arbitrary shape with symmetry, which enables the unitcell to achieve a large sub-wavelength bandgap. We propose a lightweight and efficient algorithm, ‘decoupled gradient decent (DGD)’, to search for the optimal design and uncover the ‘best’ shape features—the interface curvature—in tuning the wave transmission. As a result, the host composite can partly overlap the individual cell’s bandgap and achieve a wide frequency gap that forbids wave transmission, namely a passive tunability. Another advantage of the trigonometric series designed shape is the high flexibility. A slight surface pressure obviously deforms the unitcell and shifts its band structure. Our simulation shows that a moderate pressure dramatically changes the frequency forbidding gap for both traversal and longitudinal wave transmissions, which indicates an active tunability. The surface deformation can be applied by either a mechanical pressure or external electric field if the composite uses a dielectric substrate. Therefore, this study opens a sandbox of manipulating wave transmission through the topology and structure optimization in applications such as seismic damping (Hz), noise insulating (kHz) and ultrasound imaging (MHz).</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/acc36c</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bandgap ; data-driven ; metamaterials ; trigonometric series ; tunability</subject><ispartof>Smart materials and structures, 2023-05, Vol.32 (5), p.5</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-486749b9e3ddf1d84c4331c7f8cd24d4863089fe73b9323d51bf3280d3d1fec43</citedby><cites>FETCH-LOGICAL-c280t-486749b9e3ddf1d84c4331c7f8cd24d4863089fe73b9323d51bf3280d3d1fec43</cites><orcidid>0000-0001-7034-2792 ; 0000-0002-0848-9977 ; 0000-0003-3725-9035 ; 0000-0002-1263-7266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/acc36c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Huo, Jindong</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Wang, Ningzhen</creatorcontrib><creatorcontrib>Gao, Wenqiang</creatorcontrib><creatorcontrib>Zhou, Jierui</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><title>Data-driven design and optimization of ultra-tunable acoustic metamaterials</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>This paper presents a data-driven design and optimization of acoustic metamaterials with three-phase materials for highly tunable wave transmission. The geometry of representative unitcell is defined by the trigonometric series function to describe an arbitrary shape with symmetry, which enables the unitcell to achieve a large sub-wavelength bandgap. We propose a lightweight and efficient algorithm, ‘decoupled gradient decent (DGD)’, to search for the optimal design and uncover the ‘best’ shape features—the interface curvature—in tuning the wave transmission. As a result, the host composite can partly overlap the individual cell’s bandgap and achieve a wide frequency gap that forbids wave transmission, namely a passive tunability. Another advantage of the trigonometric series designed shape is the high flexibility. A slight surface pressure obviously deforms the unitcell and shifts its band structure. Our simulation shows that a moderate pressure dramatically changes the frequency forbidding gap for both traversal and longitudinal wave transmissions, which indicates an active tunability. The surface deformation can be applied by either a mechanical pressure or external electric field if the composite uses a dielectric substrate. Therefore, this study opens a sandbox of manipulating wave transmission through the topology and structure optimization in applications such as seismic damping (Hz), noise insulating (kHz) and ultrasound imaging (MHz).</description><subject>bandgap</subject><subject>data-driven</subject><subject>metamaterials</subject><subject>trigonometric series</subject><subject>tunability</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEf3LvMDjJPbdNJ0KeMTB9wouAtpHpKhbUqSCvrrbRlx5-rAvee73HMQugR6DVSINTAOhPPN-1ppzbg-QsXf6BgVtOEVgbrkp-gspT2lAIJBgZ5vVVbERP9pB2xs8h8DVoPBYcy-998q-zDg4PDU5ahIngbVdhYrHaaUvca9zapX2UavunSOTtws9uJXV-jt_u51-0h2Lw9P25sd0aWgmVSC11XTNpYZ48CISleMga6d0KaszLxmVDTO1qxtWMnMBlrHZtIwA87O5hWih7s6hpSidXKMvlfxSwKVSxlySS6X5PJQxoxcHRAfRrkPUxzmB_-3_wAS-GJk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Huo, Jindong</creator><creator>Wang, Yifei</creator><creator>Wang, Ningzhen</creator><creator>Gao, Wenqiang</creator><creator>Zhou, Jierui</creator><creator>Cao, Yang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7034-2792</orcidid><orcidid>https://orcid.org/0000-0002-0848-9977</orcidid><orcidid>https://orcid.org/0000-0003-3725-9035</orcidid><orcidid>https://orcid.org/0000-0002-1263-7266</orcidid></search><sort><creationdate>20230501</creationdate><title>Data-driven design and optimization of ultra-tunable acoustic metamaterials</title><author>Huo, Jindong ; Wang, Yifei ; Wang, Ningzhen ; Gao, Wenqiang ; Zhou, Jierui ; Cao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-486749b9e3ddf1d84c4331c7f8cd24d4863089fe73b9323d51bf3280d3d1fec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bandgap</topic><topic>data-driven</topic><topic>metamaterials</topic><topic>trigonometric series</topic><topic>tunability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Jindong</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Wang, Ningzhen</creatorcontrib><creatorcontrib>Gao, Wenqiang</creatorcontrib><creatorcontrib>Zhou, Jierui</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Jindong</au><au>Wang, Yifei</au><au>Wang, Ningzhen</au><au>Gao, Wenqiang</au><au>Zhou, Jierui</au><au>Cao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven design and optimization of ultra-tunable acoustic metamaterials</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>32</volume><issue>5</issue><spage>5</spage><pages>5-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>This paper presents a data-driven design and optimization of acoustic metamaterials with three-phase materials for highly tunable wave transmission. The geometry of representative unitcell is defined by the trigonometric series function to describe an arbitrary shape with symmetry, which enables the unitcell to achieve a large sub-wavelength bandgap. We propose a lightweight and efficient algorithm, ‘decoupled gradient decent (DGD)’, to search for the optimal design and uncover the ‘best’ shape features—the interface curvature—in tuning the wave transmission. As a result, the host composite can partly overlap the individual cell’s bandgap and achieve a wide frequency gap that forbids wave transmission, namely a passive tunability. Another advantage of the trigonometric series designed shape is the high flexibility. A slight surface pressure obviously deforms the unitcell and shifts its band structure. Our simulation shows that a moderate pressure dramatically changes the frequency forbidding gap for both traversal and longitudinal wave transmissions, which indicates an active tunability. The surface deformation can be applied by either a mechanical pressure or external electric field if the composite uses a dielectric substrate. Therefore, this study opens a sandbox of manipulating wave transmission through the topology and structure optimization in applications such as seismic damping (Hz), noise insulating (kHz) and ultrasound imaging (MHz).</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/acc36c</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7034-2792</orcidid><orcidid>https://orcid.org/0000-0002-0848-9977</orcidid><orcidid>https://orcid.org/0000-0003-3725-9035</orcidid><orcidid>https://orcid.org/0000-0002-1263-7266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2023-05, Vol.32 (5), p.5
issn 0964-1726
1361-665X
language eng
recordid cdi_crossref_primary_10_1088_1361_665X_acc36c
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects bandgap
data-driven
metamaterials
trigonometric series
tunability
title Data-driven design and optimization of ultra-tunable acoustic metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20design%20and%20optimization%20of%20ultra-tunable%20acoustic%20metamaterials&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Huo,%20Jindong&rft.date=2023-05-01&rft.volume=32&rft.issue=5&rft.spage=5&rft.pages=5-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/acc36c&rft_dat=%3Ciop_cross%3Esmsacc36c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true