Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles
In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fab...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2022-12, Vol.31 (12), p.125018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125018 |
container_title | Smart materials and structures |
container_volume | 31 |
creator | Bica, Ioan Mircea Anitas, Eugen |
description | In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance (
C
) and resistance (
R
) at the two gates of the QEC are measured as a function of magnetic flux density
B
. It is shown that both
C
and
R
have different values at the two gates and are sensitively influenced by the magnetic field. When
0
⩽
B
(
mT
)
⩽
100
, the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates,
B
-dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers. |
doi_str_mv | 10.1088/1361-665X/ac9ef2 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_ac9ef2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsac9ef2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHINSbpG5yRBV_UhEXkLhFG2cNrtI42M6hL8bz4TSIE5xWu7MzGn2MXYK4BlEUC8gkJFIu3xaoStLpEZv9no7ZTJQyT2CVylN25v1WCIAigxn7esL3joJRXBtqG45dw3dGOeuDG1QYHLactCYVPLcdDx_EqY2bMyoqCntUJmCn6OB05I2fVqs58s8BGzf0tkX3h806XqOnZgxWNoQ4NNbxxR_CFLradvuWGxeVQ6keXazakj9nJxpbTxc_c85e725f1g_J5vn-cX2zSVQKIiQSpdJYUpE2RZ1nohR1mWmK52UjATAvMUexAqIyLYGgrkEXUoqVJmxqkNmciSl3JOId6ap3ZoduX4GoRu7VCLkaIVcT92i5mizG9tXWDq6LBf9__wYnRYta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bica, Ioan ; Mircea Anitas, Eugen</creator><creatorcontrib>Bica, Ioan ; Mircea Anitas, Eugen</creatorcontrib><description>In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance (
C
) and resistance (
R
) at the two gates of the QEC are measured as a function of magnetic flux density
B
. It is shown that both
C
and
R
have different values at the two gates and are sensitively influenced by the magnetic field. When
0
⩽
B
(
mT
)
⩽
100
, the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates,
B
-dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ac9ef2</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>carbonyl iron microparticles ; cotton fabrics ; electrical capacitor ; magnetic field sensors ; magnetoresistor</subject><ispartof>Smart materials and structures, 2022-12, Vol.31 (12), p.125018</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</citedby><cites>FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</cites><orcidid>0000-0003-2693-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/ac9ef2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Bica, Ioan</creatorcontrib><creatorcontrib>Mircea Anitas, Eugen</creatorcontrib><title>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance (
C
) and resistance (
R
) at the two gates of the QEC are measured as a function of magnetic flux density
B
. It is shown that both
C
and
R
have different values at the two gates and are sensitively influenced by the magnetic field. When
0
⩽
B
(
mT
)
⩽
100
, the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates,
B
-dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.</description><subject>carbonyl iron microparticles</subject><subject>cotton fabrics</subject><subject>electrical capacitor</subject><subject>magnetic field sensors</subject><subject>magnetoresistor</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHINSbpG5yRBV_UhEXkLhFG2cNrtI42M6hL8bz4TSIE5xWu7MzGn2MXYK4BlEUC8gkJFIu3xaoStLpEZv9no7ZTJQyT2CVylN25v1WCIAigxn7esL3joJRXBtqG45dw3dGOeuDG1QYHLactCYVPLcdDx_EqY2bMyoqCntUJmCn6OB05I2fVqs58s8BGzf0tkX3h806XqOnZgxWNoQ4NNbxxR_CFLradvuWGxeVQ6keXazakj9nJxpbTxc_c85e725f1g_J5vn-cX2zSVQKIiQSpdJYUpE2RZ1nohR1mWmK52UjATAvMUexAqIyLYGgrkEXUoqVJmxqkNmciSl3JOId6ap3ZoduX4GoRu7VCLkaIVcT92i5mizG9tXWDq6LBf9__wYnRYta</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bica, Ioan</creator><creator>Mircea Anitas, Eugen</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></search><sort><creationdate>20221201</creationdate><title>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</title><author>Bica, Ioan ; Mircea Anitas, Eugen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>carbonyl iron microparticles</topic><topic>cotton fabrics</topic><topic>electrical capacitor</topic><topic>magnetic field sensors</topic><topic>magnetoresistor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bica, Ioan</creatorcontrib><creatorcontrib>Mircea Anitas, Eugen</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bica, Ioan</au><au>Mircea Anitas, Eugen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>31</volume><issue>12</issue><spage>125018</spage><pages>125018-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance (
C
) and resistance (
R
) at the two gates of the QEC are measured as a function of magnetic flux density
B
. It is shown that both
C
and
R
have different values at the two gates and are sensitively influenced by the magnetic field. When
0
⩽
B
(
mT
)
⩽
100
, the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates,
B
-dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ac9ef2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2022-12, Vol.31 (12), p.125018 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_665X_ac9ef2 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | carbonyl iron microparticles cotton fabrics electrical capacitor magnetic field sensors magnetoresistor |
title | Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20field%20and%20microstructural%20effects%20on%20the%20electrical%20capacitance%20and%20resistance%20of%20a%20quadrupolar%20electrical%20capacitor%20based%20on%20cotton%20fabrics%20and%20carbonyl%20iron%20microparticles&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Bica,%20Ioan&rft.date=2022-12-01&rft.volume=31&rft.issue=12&rft.spage=125018&rft.pages=125018-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ac9ef2&rft_dat=%3Ciop_cross%3Esmsac9ef2%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |