Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles

In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2022-12, Vol.31 (12), p.125018
Hauptverfasser: Bica, Ioan, Mircea Anitas, Eugen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 125018
container_title Smart materials and structures
container_volume 31
creator Bica, Ioan
Mircea Anitas, Eugen
description In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance ( C ) and resistance ( R ) at the two gates of the QEC are measured as a function of magnetic flux density B . It is shown that both C and R have different values at the two gates and are sensitively influenced by the magnetic field. When 0 ⩽ B ( mT ) ⩽ 100 , the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates, B -dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.
doi_str_mv 10.1088/1361-665X/ac9ef2
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_ac9ef2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsac9ef2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHINSbpG5yRBV_UhEXkLhFG2cNrtI42M6hL8bz4TSIE5xWu7MzGn2MXYK4BlEUC8gkJFIu3xaoStLpEZv9no7ZTJQyT2CVylN25v1WCIAigxn7esL3joJRXBtqG45dw3dGOeuDG1QYHLactCYVPLcdDx_EqY2bMyoqCntUJmCn6OB05I2fVqs58s8BGzf0tkX3h806XqOnZgxWNoQ4NNbxxR_CFLradvuWGxeVQ6keXazakj9nJxpbTxc_c85e725f1g_J5vn-cX2zSVQKIiQSpdJYUpE2RZ1nohR1mWmK52UjATAvMUexAqIyLYGgrkEXUoqVJmxqkNmciSl3JOId6ap3ZoduX4GoRu7VCLkaIVcT92i5mizG9tXWDq6LBf9__wYnRYta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bica, Ioan ; Mircea Anitas, Eugen</creator><creatorcontrib>Bica, Ioan ; Mircea Anitas, Eugen</creatorcontrib><description>In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance ( C ) and resistance ( R ) at the two gates of the QEC are measured as a function of magnetic flux density B . It is shown that both C and R have different values at the two gates and are sensitively influenced by the magnetic field. When 0 ⩽ B ( mT ) ⩽ 100 , the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates, B -dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ac9ef2</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>carbonyl iron microparticles ; cotton fabrics ; electrical capacitor ; magnetic field sensors ; magnetoresistor</subject><ispartof>Smart materials and structures, 2022-12, Vol.31 (12), p.125018</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</citedby><cites>FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</cites><orcidid>0000-0003-2693-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/ac9ef2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Bica, Ioan</creatorcontrib><creatorcontrib>Mircea Anitas, Eugen</creatorcontrib><title>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance ( C ) and resistance ( R ) at the two gates of the QEC are measured as a function of magnetic flux density B . It is shown that both C and R have different values at the two gates and are sensitively influenced by the magnetic field. When 0 ⩽ B ( mT ) ⩽ 100 , the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates, B -dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.</description><subject>carbonyl iron microparticles</subject><subject>cotton fabrics</subject><subject>electrical capacitor</subject><subject>magnetic field sensors</subject><subject>magnetoresistor</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHINSbpG5yRBV_UhEXkLhFG2cNrtI42M6hL8bz4TSIE5xWu7MzGn2MXYK4BlEUC8gkJFIu3xaoStLpEZv9no7ZTJQyT2CVylN25v1WCIAigxn7esL3joJRXBtqG45dw3dGOeuDG1QYHLactCYVPLcdDx_EqY2bMyoqCntUJmCn6OB05I2fVqs58s8BGzf0tkX3h806XqOnZgxWNoQ4NNbxxR_CFLradvuWGxeVQ6keXazakj9nJxpbTxc_c85e725f1g_J5vn-cX2zSVQKIiQSpdJYUpE2RZ1nohR1mWmK52UjATAvMUexAqIyLYGgrkEXUoqVJmxqkNmciSl3JOId6ap3ZoduX4GoRu7VCLkaIVcT92i5mizG9tXWDq6LBf9__wYnRYta</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bica, Ioan</creator><creator>Mircea Anitas, Eugen</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></search><sort><creationdate>20221201</creationdate><title>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</title><author>Bica, Ioan ; Mircea Anitas, Eugen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-6a6cfa9e82d8b43090b93fe6a65d611a49a4a071ee9291e1bb1f86607feadb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>carbonyl iron microparticles</topic><topic>cotton fabrics</topic><topic>electrical capacitor</topic><topic>magnetic field sensors</topic><topic>magnetoresistor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bica, Ioan</creatorcontrib><creatorcontrib>Mircea Anitas, Eugen</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bica, Ioan</au><au>Mircea Anitas, Eugen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>31</volume><issue>12</issue><spage>125018</spage><pages>125018-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>In this work we present a procedure for manufacturing an electrical device in the form of a quadrupolar electrical capacitor (QEC). The device is based on cotton fiber fabrics with carbonyl iron (CI) microparticles and self-adhesive copper foil, and surgical tape in the form of polyacrylic fiber fabrics, as element of consolidation and electrical insulation. By using an RLC electrical bridge, the equivalent electrical capacitance ( C ) and resistance ( R ) at the two gates of the QEC are measured as a function of magnetic flux density B . It is shown that both C and R have different values at the two gates and are sensitively influenced by the magnetic field. When 0 ⩽ B ( mT ) ⩽ 100 , the electrical response function at the two gates has a resistive character due to magnetostriction of CI microparticles in the QEC body. For fixed voltages at one of the gates, B -dependent voltages are measured at the other gate. The structure at the two gates are quantified in terms of fractal parameters obtained from scanning electron microscopy images. The obtained characteristics shows that the obtained QEC can be used as a magnetic controllable resistor or as a magnetic field sensor for patients wearing pacemakers.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ac9ef2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2022-12, Vol.31 (12), p.125018
issn 0964-1726
1361-665X
language eng
recordid cdi_crossref_primary_10_1088_1361_665X_ac9ef2
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects carbonyl iron microparticles
cotton fabrics
electrical capacitor
magnetic field sensors
magnetoresistor
title Magnetic field and microstructural effects on the electrical capacitance and resistance of a quadrupolar electrical capacitor based on cotton fabrics and carbonyl iron microparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20field%20and%20microstructural%20effects%20on%20the%20electrical%20capacitance%20and%20resistance%20of%20a%20quadrupolar%20electrical%20capacitor%20based%20on%20cotton%20fabrics%20and%20carbonyl%20iron%20microparticles&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Bica,%20Ioan&rft.date=2022-12-01&rft.volume=31&rft.issue=12&rft.spage=125018&rft.pages=125018-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ac9ef2&rft_dat=%3Ciop_cross%3Esmsac9ef2%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true