Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements
High-performance flexible pressure sensors are attracting great interest owing to their potential applications for electronic skins, human-machine interfaces, and biomedical diagnostics. However, there remain significant challenges for the fabrication of low-cost and high-sensitivity sensors. Here,...
Gespeichert in:
Veröffentlicht in: | Smart materials and structures 2021-03, Vol.30 (3), p.35024 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35024 |
container_title | Smart materials and structures |
container_volume | 30 |
creator | Fan, Zhihong Zhang, Lei Tan, Qiulin Yao, Xue Lin, Baimao Wang, Ya Xiong, Jijun |
description | High-performance flexible pressure sensors are attracting great interest owing to their potential applications for electronic skins, human-machine interfaces, and biomedical diagnostics. However, there remain significant challenges for the fabrication of low-cost and high-sensitivity sensors. Here, we report the preparation of Ti3C2Tx MXene/single-wall carbon nanotube (SWNT) composite films through vacuum-assisted filtration followed by thermal shrinkage. SWNTs can effectively prevent MXenes from stacking and improve the electrical performance of the films. The films are used as a flexible piezoresistive sensor for pressures ranging from 33 Pa to 130 kPa. And experimental test results indicate that the fabricated pressure sensors have high sensitivity (116.15 kPa−1 below 40 kPa and 12.7 kPa−1 at 40-130 kPa), a fast response time of 13 ms, and long-term stability over 6000 periods. The sensor can be used to monitor human physiological signals, such as finger movements, voice detection, and wrist pulse in real-time. Moreover, a 4 × 4 sensor array was successfully applied in the pressure distribution mapping of different objects, indicating that the pressure sensor can be applied in electronic skin, medical devices, and other wearable devices. |
doi_str_mv | 10.1088/1361-665X/abe030 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_abe030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsabe030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-35d7479cf4693257586788218d9095d9e9d3e8e0fcdfe2f8d4a5a3e6c16d34a13</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM3pjIdSOE8cZUcWXVMQCopvl2OeSKnEiX6KKgf-dRkVMiOmku_fePf0IueTshjOlFlxInkiZrxemAibYEZn9ro7JjJUyS3iRylNyhrhljHMl-Ix8vYOJpmqA9hEQxwgUIWAXaWUQHO0CfV5DgAXWYdNAsjNNQ62J1f4QTOiGsQLq66alu3r4oDaObd_sfTjE0Q5TnJ-yYmdcEk3YAG3BTG9aCAOekxNvGoSLnzknb_d3r8vHZPXy8LS8XSVW8HRIRO6KrCitz2Qp0rzIlSyUSrlyJStzV0LpBChg3joPqVcuM7kRIC2XTmSGizlhh1wbO8QIXvexbk381JzpCZ-eWOmJlT7g21uuD5a66_W2G2PYF_xPfvWHHFvUgmmhmchZmuneefENlyeBtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements</title><source>Institute of Physics Journals</source><creator>Fan, Zhihong ; Zhang, Lei ; Tan, Qiulin ; Yao, Xue ; Lin, Baimao ; Wang, Ya ; Xiong, Jijun</creator><creatorcontrib>Fan, Zhihong ; Zhang, Lei ; Tan, Qiulin ; Yao, Xue ; Lin, Baimao ; Wang, Ya ; Xiong, Jijun</creatorcontrib><description>High-performance flexible pressure sensors are attracting great interest owing to their potential applications for electronic skins, human-machine interfaces, and biomedical diagnostics. However, there remain significant challenges for the fabrication of low-cost and high-sensitivity sensors. Here, we report the preparation of Ti3C2Tx MXene/single-wall carbon nanotube (SWNT) composite films through vacuum-assisted filtration followed by thermal shrinkage. SWNTs can effectively prevent MXenes from stacking and improve the electrical performance of the films. The films are used as a flexible piezoresistive sensor for pressures ranging from 33 Pa to 130 kPa. And experimental test results indicate that the fabricated pressure sensors have high sensitivity (116.15 kPa−1 below 40 kPa and 12.7 kPa−1 at 40-130 kPa), a fast response time of 13 ms, and long-term stability over 6000 periods. The sensor can be used to monitor human physiological signals, such as finger movements, voice detection, and wrist pulse in real-time. Moreover, a 4 × 4 sensor array was successfully applied in the pressure distribution mapping of different objects, indicating that the pressure sensor can be applied in electronic skin, medical devices, and other wearable devices.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/abe030</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>carbon nanotube ; flexible pressure sensor ; MXene ; wearable electronics</subject><ispartof>Smart materials and structures, 2021-03, Vol.30 (3), p.35024</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-35d7479cf4693257586788218d9095d9e9d3e8e0fcdfe2f8d4a5a3e6c16d34a13</citedby><cites>FETCH-LOGICAL-c312t-35d7479cf4693257586788218d9095d9e9d3e8e0fcdfe2f8d4a5a3e6c16d34a13</cites><orcidid>0000-0001-7877-9278 ; 0000-0001-9887-3296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/abe030/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Fan, Zhihong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Tan, Qiulin</creatorcontrib><creatorcontrib>Yao, Xue</creatorcontrib><creatorcontrib>Lin, Baimao</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Xiong, Jijun</creatorcontrib><title>Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>High-performance flexible pressure sensors are attracting great interest owing to their potential applications for electronic skins, human-machine interfaces, and biomedical diagnostics. However, there remain significant challenges for the fabrication of low-cost and high-sensitivity sensors. Here, we report the preparation of Ti3C2Tx MXene/single-wall carbon nanotube (SWNT) composite films through vacuum-assisted filtration followed by thermal shrinkage. SWNTs can effectively prevent MXenes from stacking and improve the electrical performance of the films. The films are used as a flexible piezoresistive sensor for pressures ranging from 33 Pa to 130 kPa. And experimental test results indicate that the fabricated pressure sensors have high sensitivity (116.15 kPa−1 below 40 kPa and 12.7 kPa−1 at 40-130 kPa), a fast response time of 13 ms, and long-term stability over 6000 periods. The sensor can be used to monitor human physiological signals, such as finger movements, voice detection, and wrist pulse in real-time. Moreover, a 4 × 4 sensor array was successfully applied in the pressure distribution mapping of different objects, indicating that the pressure sensor can be applied in electronic skin, medical devices, and other wearable devices.</description><subject>carbon nanotube</subject><subject>flexible pressure sensor</subject><subject>MXene</subject><subject>wearable electronics</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwM3pjIdSOE8cZUcWXVMQCopvl2OeSKnEiX6KKgf-dRkVMiOmku_fePf0IueTshjOlFlxInkiZrxemAibYEZn9ro7JjJUyS3iRylNyhrhljHMl-Ix8vYOJpmqA9hEQxwgUIWAXaWUQHO0CfV5DgAXWYdNAsjNNQ62J1f4QTOiGsQLq66alu3r4oDaObd_sfTjE0Q5TnJ-yYmdcEk3YAG3BTG9aCAOekxNvGoSLnzknb_d3r8vHZPXy8LS8XSVW8HRIRO6KrCitz2Qp0rzIlSyUSrlyJStzV0LpBChg3joPqVcuM7kRIC2XTmSGizlhh1wbO8QIXvexbk381JzpCZ-eWOmJlT7g21uuD5a66_W2G2PYF_xPfvWHHFvUgmmhmchZmuneefENlyeBtg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Fan, Zhihong</creator><creator>Zhang, Lei</creator><creator>Tan, Qiulin</creator><creator>Yao, Xue</creator><creator>Lin, Baimao</creator><creator>Wang, Ya</creator><creator>Xiong, Jijun</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7877-9278</orcidid><orcidid>https://orcid.org/0000-0001-9887-3296</orcidid></search><sort><creationdate>20210301</creationdate><title>Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements</title><author>Fan, Zhihong ; Zhang, Lei ; Tan, Qiulin ; Yao, Xue ; Lin, Baimao ; Wang, Ya ; Xiong, Jijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-35d7479cf4693257586788218d9095d9e9d3e8e0fcdfe2f8d4a5a3e6c16d34a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>carbon nanotube</topic><topic>flexible pressure sensor</topic><topic>MXene</topic><topic>wearable electronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Zhihong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Tan, Qiulin</creatorcontrib><creatorcontrib>Yao, Xue</creatorcontrib><creatorcontrib>Lin, Baimao</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Xiong, Jijun</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Zhihong</au><au>Zhang, Lei</au><au>Tan, Qiulin</au><au>Yao, Xue</au><au>Lin, Baimao</au><au>Wang, Ya</au><au>Xiong, Jijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>30</volume><issue>3</issue><spage>35024</spage><pages>35024-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>High-performance flexible pressure sensors are attracting great interest owing to their potential applications for electronic skins, human-machine interfaces, and biomedical diagnostics. However, there remain significant challenges for the fabrication of low-cost and high-sensitivity sensors. Here, we report the preparation of Ti3C2Tx MXene/single-wall carbon nanotube (SWNT) composite films through vacuum-assisted filtration followed by thermal shrinkage. SWNTs can effectively prevent MXenes from stacking and improve the electrical performance of the films. The films are used as a flexible piezoresistive sensor for pressures ranging from 33 Pa to 130 kPa. And experimental test results indicate that the fabricated pressure sensors have high sensitivity (116.15 kPa−1 below 40 kPa and 12.7 kPa−1 at 40-130 kPa), a fast response time of 13 ms, and long-term stability over 6000 periods. The sensor can be used to monitor human physiological signals, such as finger movements, voice detection, and wrist pulse in real-time. Moreover, a 4 × 4 sensor array was successfully applied in the pressure distribution mapping of different objects, indicating that the pressure sensor can be applied in electronic skin, medical devices, and other wearable devices.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/abe030</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7877-9278</orcidid><orcidid>https://orcid.org/0000-0001-9887-3296</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-1726 |
ispartof | Smart materials and structures, 2021-03, Vol.30 (3), p.35024 |
issn | 0964-1726 1361-665X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_665X_abe030 |
source | Institute of Physics Journals |
subjects | carbon nanotube flexible pressure sensor MXene wearable electronics |
title | Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20pressure%20sensor%20based%20on%20MXene/single-wall%20carbon%20nanotube%20film%20with%20crumpled%20structure%20for%20broad-range%20measurements&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Fan,%20Zhihong&rft.date=2021-03-01&rft.volume=30&rft.issue=3&rft.spage=35024&rft.pages=35024-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/abe030&rft_dat=%3Ciop_cross%3Esmsabe030%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |