A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation

Traditional traveling wave robots have strict requirements on the operating interface due to the fact that they usually only work on smooth and flat surfaces, holding the disadvantages of poor load capacity and complex driving mode, and limiting their application range. In order to overcome the abov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2021-03, Vol.30 (3), p.35016
Hauptverfasser: Jia, Botao, Wang, Liang, Wang, Ruifeng, Jin, Jiamei, Zhao, Zhenhua, Wu, Dawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35016
container_title Smart materials and structures
container_volume 30
creator Jia, Botao
Wang, Liang
Wang, Ruifeng
Jin, Jiamei
Zhao, Zhenhua
Wu, Dawei
description Traditional traveling wave robots have strict requirements on the operating interface due to the fact that they usually only work on smooth and flat surfaces, holding the disadvantages of poor load capacity and complex driving mode, and limiting their application range. In order to overcome the above problems, a novel traveling wave piezoelectric actuated wheeled robot is proposed in this study. The robot is composed of a bonded-type piezoelectric actuator and wheel mechanisms. Rotating traveling wave can be produced in the annular parts of the piezoelectric actuator to drive the wheel mechanisms. In order to study the dynamic characteristics of the piezoelectric actuator, an electromechanical coupling model is developed by using the transfer matrix method. Then the prototype of the piezoelectric actuator is fabricated and assembled, and its vibration characteristics are measured to confirm the feasibility of the developed transfer matrix model. Finally, performance evaluation investigations of the proposed traveling wave piezoelectric actuated wheeled robot are conducted. Under the excitation voltages of 350 Vpp and the phase difference of 90°, the robot prototype achieved a step climbing angle of 75°, a maximum no-load velocity of 136.8 mm s−1, and a maximum payload of 320 g. The proposed traveling wave piezoelectric actuated wheeled robot presents expected terrain adaptability and obstacle climbing capability.
doi_str_mv 10.1088/1361-665X/abdc0a
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_abdc0a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsabdc0a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-13e0d417327b925314fe2541eba2c7c28e113c6ec415a686102ccf103b3727743</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdoz-goV47cVJuVcVLqsQFJG6W42xaVyGObLelfD2uirhxmtnZndXuEHIL7A5YVU1BSMikLD6mum4M02dk9CedkxGbyTyDkstLchXChjGASsCIHOa0dzvsaPQ6ge1XdJ8IHSx-O-zQRG8N1SZudcSG7teYxIZ6V7t4TxsMdtVPaFyj8xit0R3Vve4OwYZJYg3FrwG9_cQ-ppbtdxiiXeloXX9NLlrdBbz5xTF5f3x4Wzxny9enl8V8mRnBy5iBQNbkUKainvFCQN4iL3LAWnNTGl4hgDASTQ6FlpUExo1pgYlalLwsczEm7LTXeBeCx1YN6SDtDwqYOkanjjmpY07qFF2yTE4W6wa1cVufXgr_j_8AtddzaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jia, Botao ; Wang, Liang ; Wang, Ruifeng ; Jin, Jiamei ; Zhao, Zhenhua ; Wu, Dawei</creator><creatorcontrib>Jia, Botao ; Wang, Liang ; Wang, Ruifeng ; Jin, Jiamei ; Zhao, Zhenhua ; Wu, Dawei</creatorcontrib><description>Traditional traveling wave robots have strict requirements on the operating interface due to the fact that they usually only work on smooth and flat surfaces, holding the disadvantages of poor load capacity and complex driving mode, and limiting their application range. In order to overcome the above problems, a novel traveling wave piezoelectric actuated wheeled robot is proposed in this study. The robot is composed of a bonded-type piezoelectric actuator and wheel mechanisms. Rotating traveling wave can be produced in the annular parts of the piezoelectric actuator to drive the wheel mechanisms. In order to study the dynamic characteristics of the piezoelectric actuator, an electromechanical coupling model is developed by using the transfer matrix method. Then the prototype of the piezoelectric actuator is fabricated and assembled, and its vibration characteristics are measured to confirm the feasibility of the developed transfer matrix model. Finally, performance evaluation investigations of the proposed traveling wave piezoelectric actuated wheeled robot are conducted. Under the excitation voltages of 350 Vpp and the phase difference of 90°, the robot prototype achieved a step climbing angle of 75°, a maximum no-load velocity of 136.8 mm s−1, and a maximum payload of 320 g. The proposed traveling wave piezoelectric actuated wheeled robot presents expected terrain adaptability and obstacle climbing capability.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/abdc0a</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>piezoelectric actuator ; transfer matrix method ; traveling wave ; ultrasonic motor ; wheeled robot</subject><ispartof>Smart materials and structures, 2021-03, Vol.30 (3), p.35016</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-13e0d417327b925314fe2541eba2c7c28e113c6ec415a686102ccf103b3727743</citedby><cites>FETCH-LOGICAL-c327t-13e0d417327b925314fe2541eba2c7c28e113c6ec415a686102ccf103b3727743</cites><orcidid>0000-0002-3289-1392 ; 0000-0002-5158-0338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/abdc0a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Jia, Botao</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Wang, Ruifeng</creatorcontrib><creatorcontrib>Jin, Jiamei</creatorcontrib><creatorcontrib>Zhao, Zhenhua</creatorcontrib><creatorcontrib>Wu, Dawei</creatorcontrib><title>A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>Traditional traveling wave robots have strict requirements on the operating interface due to the fact that they usually only work on smooth and flat surfaces, holding the disadvantages of poor load capacity and complex driving mode, and limiting their application range. In order to overcome the above problems, a novel traveling wave piezoelectric actuated wheeled robot is proposed in this study. The robot is composed of a bonded-type piezoelectric actuator and wheel mechanisms. Rotating traveling wave can be produced in the annular parts of the piezoelectric actuator to drive the wheel mechanisms. In order to study the dynamic characteristics of the piezoelectric actuator, an electromechanical coupling model is developed by using the transfer matrix method. Then the prototype of the piezoelectric actuator is fabricated and assembled, and its vibration characteristics are measured to confirm the feasibility of the developed transfer matrix model. Finally, performance evaluation investigations of the proposed traveling wave piezoelectric actuated wheeled robot are conducted. Under the excitation voltages of 350 Vpp and the phase difference of 90°, the robot prototype achieved a step climbing angle of 75°, a maximum no-load velocity of 136.8 mm s−1, and a maximum payload of 320 g. The proposed traveling wave piezoelectric actuated wheeled robot presents expected terrain adaptability and obstacle climbing capability.</description><subject>piezoelectric actuator</subject><subject>transfer matrix method</subject><subject>traveling wave</subject><subject>ultrasonic motor</subject><subject>wheeled robot</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdoz-goV47cVJuVcVLqsQFJG6W42xaVyGObLelfD2uirhxmtnZndXuEHIL7A5YVU1BSMikLD6mum4M02dk9CedkxGbyTyDkstLchXChjGASsCIHOa0dzvsaPQ6ge1XdJ8IHSx-O-zQRG8N1SZudcSG7teYxIZ6V7t4TxsMdtVPaFyj8xit0R3Vve4OwYZJYg3FrwG9_cQ-ppbtdxiiXeloXX9NLlrdBbz5xTF5f3x4Wzxny9enl8V8mRnBy5iBQNbkUKainvFCQN4iL3LAWnNTGl4hgDASTQ6FlpUExo1pgYlalLwsczEm7LTXeBeCx1YN6SDtDwqYOkanjjmpY07qFF2yTE4W6wa1cVufXgr_j_8AtddzaA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Jia, Botao</creator><creator>Wang, Liang</creator><creator>Wang, Ruifeng</creator><creator>Jin, Jiamei</creator><creator>Zhao, Zhenhua</creator><creator>Wu, Dawei</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3289-1392</orcidid><orcidid>https://orcid.org/0000-0002-5158-0338</orcidid></search><sort><creationdate>20210301</creationdate><title>A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation</title><author>Jia, Botao ; Wang, Liang ; Wang, Ruifeng ; Jin, Jiamei ; Zhao, Zhenhua ; Wu, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-13e0d417327b925314fe2541eba2c7c28e113c6ec415a686102ccf103b3727743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>piezoelectric actuator</topic><topic>transfer matrix method</topic><topic>traveling wave</topic><topic>ultrasonic motor</topic><topic>wheeled robot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Botao</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Wang, Ruifeng</creatorcontrib><creatorcontrib>Jin, Jiamei</creatorcontrib><creatorcontrib>Zhao, Zhenhua</creatorcontrib><creatorcontrib>Wu, Dawei</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Botao</au><au>Wang, Liang</au><au>Wang, Ruifeng</au><au>Jin, Jiamei</au><au>Zhao, Zhenhua</au><au>Wu, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>30</volume><issue>3</issue><spage>35016</spage><pages>35016-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>Traditional traveling wave robots have strict requirements on the operating interface due to the fact that they usually only work on smooth and flat surfaces, holding the disadvantages of poor load capacity and complex driving mode, and limiting their application range. In order to overcome the above problems, a novel traveling wave piezoelectric actuated wheeled robot is proposed in this study. The robot is composed of a bonded-type piezoelectric actuator and wheel mechanisms. Rotating traveling wave can be produced in the annular parts of the piezoelectric actuator to drive the wheel mechanisms. In order to study the dynamic characteristics of the piezoelectric actuator, an electromechanical coupling model is developed by using the transfer matrix method. Then the prototype of the piezoelectric actuator is fabricated and assembled, and its vibration characteristics are measured to confirm the feasibility of the developed transfer matrix model. Finally, performance evaluation investigations of the proposed traveling wave piezoelectric actuated wheeled robot are conducted. Under the excitation voltages of 350 Vpp and the phase difference of 90°, the robot prototype achieved a step climbing angle of 75°, a maximum no-load velocity of 136.8 mm s−1, and a maximum payload of 320 g. The proposed traveling wave piezoelectric actuated wheeled robot presents expected terrain adaptability and obstacle climbing capability.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/abdc0a</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3289-1392</orcidid><orcidid>https://orcid.org/0000-0002-5158-0338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2021-03, Vol.30 (3), p.35016
issn 0964-1726
1361-665X
language eng
recordid cdi_crossref_primary_10_1088_1361_665X_abdc0a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects piezoelectric actuator
transfer matrix method
traveling wave
ultrasonic motor
wheeled robot
title A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20traveling%20wave%20piezoelectric%20actuated%20wheeled%20robot:%20design,%20theoretical%20analysis,%20and%20experimental%20investigation&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Jia,%20Botao&rft.date=2021-03-01&rft.volume=30&rft.issue=3&rft.spage=35016&rft.pages=35016-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/abdc0a&rft_dat=%3Ciop_cross%3Esmsabdc0a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true