Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors

Uniform, linear, and nonlinear temperature gradients are considered to perform buckling and vibration analyses of carbon nanotube (CNT)-based mass sensors modeled as a clamped-clamped Euler-Bernoulli nanobeam with a deposited atomic-scale particle. Size dependent effects are taken into account using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Smart materials and structures 2019-06, Vol.28 (7), p.74003
Hauptverfasser: Ghaffari, S S, Ceballes, S, Abdelkefi, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 74003
container_title Smart materials and structures
container_volume 28
creator Ghaffari, S S
Ceballes, S
Abdelkefi, A
description Uniform, linear, and nonlinear temperature gradients are considered to perform buckling and vibration analyses of carbon nanotube (CNT)-based mass sensors modeled as a clamped-clamped Euler-Bernoulli nanobeam with a deposited atomic-scale particle. Size dependent effects are taken into account using the Eringen's nonlocal elasticity theory. Employing the Hamilton's principle, the governing equations of motion considering the three types of temperature distribution are derived. To investigate the effects of various thermal loadings on the mass detection sensitivity of clamped CNT-mass detectors, four distinct noble gas atoms, namely Helium (He), Neon (Ne), Argon (Ar), and Krypton (Kr) with very low chemical reactivity are considered as attached atomic-scale masses. The influence of important parameters, such as the length and diameter of the CNT, the deposited mass and its location, the nonlocal parameter, the surface temperature difference, the temperature rise, and the type of temperature distribution on the errors in thermal buckling loads and frequency shifts are also studied. Assessing the impacts of the inaccuracies of uniform and linear temperature distributions on the critical thermal buckling load and the frequency shift of the CNT-based mechanical resonator is the primary contribution of the work. The numerical results indicate that in the pre-buckling region, the assumptions of uniform and linear temperature distributions through the thickness of the CNT estimate higher values of the natural frequency and the frequency shift compared to the nonlinear temperature gradient. On the contrary, the nonlinear thermal gradient across the radius of the CNT-based mass detector yields the largest values of the frequency shift and hence the highest mass detection sensitivities of the CNT-based mass sensor in the post-buckling configuration.
doi_str_mv 10.1088/1361-665X/ab1e25
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_665X_ab1e25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>smsab1e25</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-8c990a04e9e2d1120cd71b71a7fb93a9e94446941e872056f03ed3fd9fd6cf3f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3j_kBrk022-zmKKVaoeBFwdsym0zolm5SMumh_95dKt48DTy-9xg-xh6leJaiaRZSaVlovfxeQCexXF6x2V90zWbC6KqQdalv2R3RXggpGyVnjNbeo83Eo-d5h2mAAz9EcMQTHhMShgy5j2EEwgRwdw4w9JY4BMftDhLYjKmnPGXjiIXUjWiAEPOpQyo6IHR8ACI-rlFMdM9uPBwIH37vnH29rj9Xm2L78fa-etkWVlU6F401RoCo0GDppCyFdbXsagm174wCg6aqKm0qiU1diqX2QqFT3hnvtPXKqzkTl12bIlFC3x5TP0A6t1K0k7R2MtROhtqLtLHydKn08dju4ymF8cH_8R9lt3EN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ghaffari, S S ; Ceballes, S ; Abdelkefi, A</creator><creatorcontrib>Ghaffari, S S ; Ceballes, S ; Abdelkefi, A</creatorcontrib><description>Uniform, linear, and nonlinear temperature gradients are considered to perform buckling and vibration analyses of carbon nanotube (CNT)-based mass sensors modeled as a clamped-clamped Euler-Bernoulli nanobeam with a deposited atomic-scale particle. Size dependent effects are taken into account using the Eringen's nonlocal elasticity theory. Employing the Hamilton's principle, the governing equations of motion considering the three types of temperature distribution are derived. To investigate the effects of various thermal loadings on the mass detection sensitivity of clamped CNT-mass detectors, four distinct noble gas atoms, namely Helium (He), Neon (Ne), Argon (Ar), and Krypton (Kr) with very low chemical reactivity are considered as attached atomic-scale masses. The influence of important parameters, such as the length and diameter of the CNT, the deposited mass and its location, the nonlocal parameter, the surface temperature difference, the temperature rise, and the type of temperature distribution on the errors in thermal buckling loads and frequency shifts are also studied. Assessing the impacts of the inaccuracies of uniform and linear temperature distributions on the critical thermal buckling load and the frequency shift of the CNT-based mechanical resonator is the primary contribution of the work. The numerical results indicate that in the pre-buckling region, the assumptions of uniform and linear temperature distributions through the thickness of the CNT estimate higher values of the natural frequency and the frequency shift compared to the nonlinear temperature gradient. On the contrary, the nonlinear thermal gradient across the radius of the CNT-based mass detector yields the largest values of the frequency shift and hence the highest mass detection sensitivities of the CNT-based mass sensor in the post-buckling configuration.</description><identifier>ISSN: 0964-1726</identifier><identifier>EISSN: 1361-665X</identifier><identifier>DOI: 10.1088/1361-665X/ab1e25</identifier><identifier>CODEN: SMSTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>buckling ; carbon nanotubes ; mass sensor ; noble gas atom ; sensitivity ; temperature distribution</subject><ispartof>Smart materials and structures, 2019-06, Vol.28 (7), p.74003</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-8c990a04e9e2d1120cd71b71a7fb93a9e94446941e872056f03ed3fd9fd6cf3f3</citedby><cites>FETCH-LOGICAL-c346t-8c990a04e9e2d1120cd71b71a7fb93a9e94446941e872056f03ed3fd9fd6cf3f3</cites><orcidid>0000-0002-7284-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-665X/ab1e25/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Ghaffari, S S</creatorcontrib><creatorcontrib>Ceballes, S</creatorcontrib><creatorcontrib>Abdelkefi, A</creatorcontrib><title>Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors</title><title>Smart materials and structures</title><addtitle>SMS</addtitle><addtitle>Smart Mater. Struct</addtitle><description>Uniform, linear, and nonlinear temperature gradients are considered to perform buckling and vibration analyses of carbon nanotube (CNT)-based mass sensors modeled as a clamped-clamped Euler-Bernoulli nanobeam with a deposited atomic-scale particle. Size dependent effects are taken into account using the Eringen's nonlocal elasticity theory. Employing the Hamilton's principle, the governing equations of motion considering the three types of temperature distribution are derived. To investigate the effects of various thermal loadings on the mass detection sensitivity of clamped CNT-mass detectors, four distinct noble gas atoms, namely Helium (He), Neon (Ne), Argon (Ar), and Krypton (Kr) with very low chemical reactivity are considered as attached atomic-scale masses. The influence of important parameters, such as the length and diameter of the CNT, the deposited mass and its location, the nonlocal parameter, the surface temperature difference, the temperature rise, and the type of temperature distribution on the errors in thermal buckling loads and frequency shifts are also studied. Assessing the impacts of the inaccuracies of uniform and linear temperature distributions on the critical thermal buckling load and the frequency shift of the CNT-based mechanical resonator is the primary contribution of the work. The numerical results indicate that in the pre-buckling region, the assumptions of uniform and linear temperature distributions through the thickness of the CNT estimate higher values of the natural frequency and the frequency shift compared to the nonlinear temperature gradient. On the contrary, the nonlinear thermal gradient across the radius of the CNT-based mass detector yields the largest values of the frequency shift and hence the highest mass detection sensitivities of the CNT-based mass sensor in the post-buckling configuration.</description><subject>buckling</subject><subject>carbon nanotubes</subject><subject>mass sensor</subject><subject>noble gas atom</subject><subject>sensitivity</subject><subject>temperature distribution</subject><issn>0964-1726</issn><issn>1361-665X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKt3j_kBrk022-zmKKVaoeBFwdsym0zolm5SMumh_95dKt48DTy-9xg-xh6leJaiaRZSaVlovfxeQCexXF6x2V90zWbC6KqQdalv2R3RXggpGyVnjNbeo83Eo-d5h2mAAz9EcMQTHhMShgy5j2EEwgRwdw4w9JY4BMftDhLYjKmnPGXjiIXUjWiAEPOpQyo6IHR8ACI-rlFMdM9uPBwIH37vnH29rj9Xm2L78fa-etkWVlU6F401RoCo0GDppCyFdbXsagm174wCg6aqKm0qiU1diqX2QqFT3hnvtPXKqzkTl12bIlFC3x5TP0A6t1K0k7R2MtROhtqLtLHydKn08dju4ymF8cH_8R9lt3EN</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Ghaffari, S S</creator><creator>Ceballes, S</creator><creator>Abdelkefi, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7284-2683</orcidid></search><sort><creationdate>20190606</creationdate><title>Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors</title><author>Ghaffari, S S ; Ceballes, S ; Abdelkefi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-8c990a04e9e2d1120cd71b71a7fb93a9e94446941e872056f03ed3fd9fd6cf3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>buckling</topic><topic>carbon nanotubes</topic><topic>mass sensor</topic><topic>noble gas atom</topic><topic>sensitivity</topic><topic>temperature distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffari, S S</creatorcontrib><creatorcontrib>Ceballes, S</creatorcontrib><creatorcontrib>Abdelkefi, A</creatorcontrib><collection>CrossRef</collection><jtitle>Smart materials and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffari, S S</au><au>Ceballes, S</au><au>Abdelkefi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors</atitle><jtitle>Smart materials and structures</jtitle><stitle>SMS</stitle><addtitle>Smart Mater. Struct</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>28</volume><issue>7</issue><spage>74003</spage><pages>74003-</pages><issn>0964-1726</issn><eissn>1361-665X</eissn><coden>SMSTER</coden><abstract>Uniform, linear, and nonlinear temperature gradients are considered to perform buckling and vibration analyses of carbon nanotube (CNT)-based mass sensors modeled as a clamped-clamped Euler-Bernoulli nanobeam with a deposited atomic-scale particle. Size dependent effects are taken into account using the Eringen's nonlocal elasticity theory. Employing the Hamilton's principle, the governing equations of motion considering the three types of temperature distribution are derived. To investigate the effects of various thermal loadings on the mass detection sensitivity of clamped CNT-mass detectors, four distinct noble gas atoms, namely Helium (He), Neon (Ne), Argon (Ar), and Krypton (Kr) with very low chemical reactivity are considered as attached atomic-scale masses. The influence of important parameters, such as the length and diameter of the CNT, the deposited mass and its location, the nonlocal parameter, the surface temperature difference, the temperature rise, and the type of temperature distribution on the errors in thermal buckling loads and frequency shifts are also studied. Assessing the impacts of the inaccuracies of uniform and linear temperature distributions on the critical thermal buckling load and the frequency shift of the CNT-based mechanical resonator is the primary contribution of the work. The numerical results indicate that in the pre-buckling region, the assumptions of uniform and linear temperature distributions through the thickness of the CNT estimate higher values of the natural frequency and the frequency shift compared to the nonlinear temperature gradient. On the contrary, the nonlinear thermal gradient across the radius of the CNT-based mass detector yields the largest values of the frequency shift and hence the highest mass detection sensitivities of the CNT-based mass sensor in the post-buckling configuration.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-665X/ab1e25</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7284-2683</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0964-1726
ispartof Smart materials and structures, 2019-06, Vol.28 (7), p.74003
issn 0964-1726
1361-665X
language eng
recordid cdi_crossref_primary_10_1088_1361_665X_ab1e25
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects buckling
carbon nanotubes
mass sensor
noble gas atom
sensitivity
temperature distribution
title Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20thermal%20loads%20representations%20on%20the%20dynamics%20and%20characteristics%20of%20carbon%20nanotubes-based%20mass%20sensors&rft.jtitle=Smart%20materials%20and%20structures&rft.au=Ghaffari,%20S%20S&rft.date=2019-06-06&rft.volume=28&rft.issue=7&rft.spage=74003&rft.pages=74003-&rft.issn=0964-1726&rft.eissn=1361-665X&rft.coden=SMSTER&rft_id=info:doi/10.1088/1361-665X/ab1e25&rft_dat=%3Ciop_cross%3Esmsab1e25%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true