GaSe oxidation in air: from bulk to monolayers

Two-dimensional (2D) van derWaals semiconductors have been the subject of intense research due to their low dimensionality and tunable optoelectronic properties. However, the stability of these materials in air is one of the important issues that needs to be clarified, especially for technological a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductor science and technology 2017-10, Vol.32 (10), p.105004
Hauptverfasser: Rahaman, Mahfujur, Rodriguez, Raul D, Monecke, Manuel, Lopez-Rivera, Santos A, Zahn, Dietrich R T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105004
container_title Semiconductor science and technology
container_volume 32
creator Rahaman, Mahfujur
Rodriguez, Raul D
Monecke, Manuel
Lopez-Rivera, Santos A
Zahn, Dietrich R T
description Two-dimensional (2D) van derWaals semiconductors have been the subject of intense research due to their low dimensionality and tunable optoelectronic properties. However, the stability of these materials in air is one of the important issues that needs to be clarified, especially for technological applications. Here the time evolution of GaSe oxidation from monolayer to bulk is investigated by Raman spectroscopy, photoluminescence emission, and x-ray photoelectron spectroscopy. The Raman spectroscopy study reveals that GaSe monolayers become oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process taking roughly 5 h to penetrate up to 3 layers of GaSe. After oxidation, GaSe single-layers decompose into amorphous Se which has a strong Raman cross section under red excitation. The present study provides a clear picture of the stability of GaSe in air and will guide future research of GaSe from single- to few-layers for the appropriate development of novel technological applications for this promising 2D material.
doi_str_mv 10.1088/1361-6641/aa8441
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6641_aa8441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>sstaa8441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-b75aecad28596c64a8ab5783acb3496da488be73dd30aefcd04546f0d8b5005b3</originalsourceid><addsrcrecordid>eNp9j8FLwzAUxoMoWKd3jzl6sNtLk6aZNxluCgMP6jm8NCl0tk1JOnD_vS0VT-LpweP7fXw_Qm4ZLBkotWJcslRKwVaISgh2RpLf1zlJIJMqZZnILslVjAcAxhSHhCx3-Oao_6otDrXvaN1RrMMDrYJvqTk2n3TwtPWdb_DkQrwmFxU20d383AX52D69b57T_evuZfO4T0vO-JCaIkdXos1UvpalFKjQ5IXiWBou1tKiUMq4glvLAV1VWhC5kBVYZXKA3PAFgbm3DD7G4Crdh7rFcNIM9OSrJzk9yenZd0TuZ6T2vT74Y-jGgf_F7_6Ixzhons3UuETo3lb8G5F3Yu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GaSe oxidation in air: from bulk to monolayers</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rahaman, Mahfujur ; Rodriguez, Raul D ; Monecke, Manuel ; Lopez-Rivera, Santos A ; Zahn, Dietrich R T</creator><creatorcontrib>Rahaman, Mahfujur ; Rodriguez, Raul D ; Monecke, Manuel ; Lopez-Rivera, Santos A ; Zahn, Dietrich R T</creatorcontrib><description>Two-dimensional (2D) van derWaals semiconductors have been the subject of intense research due to their low dimensionality and tunable optoelectronic properties. However, the stability of these materials in air is one of the important issues that needs to be clarified, especially for technological applications. Here the time evolution of GaSe oxidation from monolayer to bulk is investigated by Raman spectroscopy, photoluminescence emission, and x-ray photoelectron spectroscopy. The Raman spectroscopy study reveals that GaSe monolayers become oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process taking roughly 5 h to penetrate up to 3 layers of GaSe. After oxidation, GaSe single-layers decompose into amorphous Se which has a strong Raman cross section under red excitation. The present study provides a clear picture of the stability of GaSe in air and will guide future research of GaSe from single- to few-layers for the appropriate development of novel technological applications for this promising 2D material.</description><identifier>ISSN: 0268-1242</identifier><identifier>EISSN: 1361-6641</identifier><identifier>DOI: 10.1088/1361-6641/aa8441</identifier><identifier>CODEN: SSTEET</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>2D semiconductor ; environmental stability ; GaSe ; monochalcogenides ; Raman spectroscopy</subject><ispartof>Semiconductor science and technology, 2017-10, Vol.32 (10), p.105004</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-b75aecad28596c64a8ab5783acb3496da488be73dd30aefcd04546f0d8b5005b3</citedby><cites>FETCH-LOGICAL-c313t-b75aecad28596c64a8ab5783acb3496da488be73dd30aefcd04546f0d8b5005b3</cites><orcidid>0000-0003-4016-1469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6641/aa8441/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids></links><search><creatorcontrib>Rahaman, Mahfujur</creatorcontrib><creatorcontrib>Rodriguez, Raul D</creatorcontrib><creatorcontrib>Monecke, Manuel</creatorcontrib><creatorcontrib>Lopez-Rivera, Santos A</creatorcontrib><creatorcontrib>Zahn, Dietrich R T</creatorcontrib><title>GaSe oxidation in air: from bulk to monolayers</title><title>Semiconductor science and technology</title><addtitle>SST</addtitle><addtitle>Semicond. Sci. Technol</addtitle><description>Two-dimensional (2D) van derWaals semiconductors have been the subject of intense research due to their low dimensionality and tunable optoelectronic properties. However, the stability of these materials in air is one of the important issues that needs to be clarified, especially for technological applications. Here the time evolution of GaSe oxidation from monolayer to bulk is investigated by Raman spectroscopy, photoluminescence emission, and x-ray photoelectron spectroscopy. The Raman spectroscopy study reveals that GaSe monolayers become oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process taking roughly 5 h to penetrate up to 3 layers of GaSe. After oxidation, GaSe single-layers decompose into amorphous Se which has a strong Raman cross section under red excitation. The present study provides a clear picture of the stability of GaSe in air and will guide future research of GaSe from single- to few-layers for the appropriate development of novel technological applications for this promising 2D material.</description><subject>2D semiconductor</subject><subject>environmental stability</subject><subject>GaSe</subject><subject>monochalcogenides</subject><subject>Raman spectroscopy</subject><issn>0268-1242</issn><issn>1361-6641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j8FLwzAUxoMoWKd3jzl6sNtLk6aZNxluCgMP6jm8NCl0tk1JOnD_vS0VT-LpweP7fXw_Qm4ZLBkotWJcslRKwVaISgh2RpLf1zlJIJMqZZnILslVjAcAxhSHhCx3-Oao_6otDrXvaN1RrMMDrYJvqTk2n3TwtPWdb_DkQrwmFxU20d383AX52D69b57T_evuZfO4T0vO-JCaIkdXos1UvpalFKjQ5IXiWBou1tKiUMq4glvLAV1VWhC5kBVYZXKA3PAFgbm3DD7G4Crdh7rFcNIM9OSrJzk9yenZd0TuZ6T2vT74Y-jGgf_F7_6Ixzhons3UuETo3lb8G5F3Yu8</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Rahaman, Mahfujur</creator><creator>Rodriguez, Raul D</creator><creator>Monecke, Manuel</creator><creator>Lopez-Rivera, Santos A</creator><creator>Zahn, Dietrich R T</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4016-1469</orcidid></search><sort><creationdate>20171001</creationdate><title>GaSe oxidation in air: from bulk to monolayers</title><author>Rahaman, Mahfujur ; Rodriguez, Raul D ; Monecke, Manuel ; Lopez-Rivera, Santos A ; Zahn, Dietrich R T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-b75aecad28596c64a8ab5783acb3496da488be73dd30aefcd04546f0d8b5005b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2D semiconductor</topic><topic>environmental stability</topic><topic>GaSe</topic><topic>monochalcogenides</topic><topic>Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahaman, Mahfujur</creatorcontrib><creatorcontrib>Rodriguez, Raul D</creatorcontrib><creatorcontrib>Monecke, Manuel</creatorcontrib><creatorcontrib>Lopez-Rivera, Santos A</creatorcontrib><creatorcontrib>Zahn, Dietrich R T</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductor science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahaman, Mahfujur</au><au>Rodriguez, Raul D</au><au>Monecke, Manuel</au><au>Lopez-Rivera, Santos A</au><au>Zahn, Dietrich R T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaSe oxidation in air: from bulk to monolayers</atitle><jtitle>Semiconductor science and technology</jtitle><stitle>SST</stitle><addtitle>Semicond. Sci. Technol</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>32</volume><issue>10</issue><spage>105004</spage><pages>105004-</pages><issn>0268-1242</issn><eissn>1361-6641</eissn><coden>SSTEET</coden><abstract>Two-dimensional (2D) van derWaals semiconductors have been the subject of intense research due to their low dimensionality and tunable optoelectronic properties. However, the stability of these materials in air is one of the important issues that needs to be clarified, especially for technological applications. Here the time evolution of GaSe oxidation from monolayer to bulk is investigated by Raman spectroscopy, photoluminescence emission, and x-ray photoelectron spectroscopy. The Raman spectroscopy study reveals that GaSe monolayers become oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process taking roughly 5 h to penetrate up to 3 layers of GaSe. After oxidation, GaSe single-layers decompose into amorphous Se which has a strong Raman cross section under red excitation. The present study provides a clear picture of the stability of GaSe in air and will guide future research of GaSe from single- to few-layers for the appropriate development of novel technological applications for this promising 2D material.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6641/aa8441</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4016-1469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-1242
ispartof Semiconductor science and technology, 2017-10, Vol.32 (10), p.105004
issn 0268-1242
1361-6641
language eng
recordid cdi_crossref_primary_10_1088_1361_6641_aa8441
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 2D semiconductor
environmental stability
GaSe
monochalcogenides
Raman spectroscopy
title GaSe oxidation in air: from bulk to monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaSe%20oxidation%20in%20air:%20from%20bulk%20to%20monolayers&rft.jtitle=Semiconductor%20science%20and%20technology&rft.au=Rahaman,%20Mahfujur&rft.date=2017-10-01&rft.volume=32&rft.issue=10&rft.spage=105004&rft.pages=105004-&rft.issn=0268-1242&rft.eissn=1361-6641&rft.coden=SSTEET&rft_id=info:doi/10.1088/1361-6641/aa8441&rft_dat=%3Ciop_cross%3Esstaa8441%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true