Interpretative and predictive modelling of Joint European Torus collisionality scans

Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics and controlled fusion 2019, Vol.61 (11), p.115004
Hauptverfasser: Eriksson, F, Fransson, E, Oberparleiter, M, Nordman, H, Strand, P, Salmi, A, Tala, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115004
container_title Plasma physics and controlled fusion
container_volume 61
creator Eriksson, F
Fransson, E
Oberparleiter, M
Nordman, H
Strand, P
Salmi, A
Tala, T
description Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as E ⃗ × B ⃗ shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.
doi_str_mv 10.1088/1361-6587/ab2f45
format Article
fullrecord <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6587_ab2f45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_kth_269142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-902566c3b9aaab7bb27f6873edf7cb837c141fb49aa72ef3203d3b18d6a0c9aa3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EEkvhzjFXJNKOv5NjVQotqsSBhevIduyuSzaO7KSo_z1eFhVxqJAsWTPze09jP0LeUjil0HVnlCvaKtnpM2NZEPIZ2Ty2npMNaEFbzrl8SV6VcgdAacfUhmyvp8XnOfvFLPHeN2YamloN0f0u92nw4xin2yaF5nOK09JcrjnN3kzNNuW1NC7VeYlpMmNcHprizFRekxfBjMW_-XOfkG8fL7cXV-3Nl0_XF-c3rZOgl7YHJpVy3PbGGKutZTqoTnM_BO1sx7WjggYr6lgzHzgDPnBLu0EZcLXJT8jXo2_56efV4pzj3uQHTCZi9sWb7Hbodmbc-1yweFQygJCUYX2-QOEgYAfCou4Ns4aBlppW1_dPun6I388x5VtcV-R9Dz1UvP0__mPZIVM9FazycORdTqVkHx4VFPAQJR5yw0NueIyySt4dJTHNeJfWXD-74Dy7gJWkhyMBBM5D-Lv9P-yT1r8ARGavQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interpretative and predictive modelling of Joint European Torus collisionality scans</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>SWEPUB Freely available online</source><creator>Eriksson, F ; Fransson, E ; Oberparleiter, M ; Nordman, H ; Strand, P ; Salmi, A ; Tala, T</creator><creatorcontrib>Eriksson, F ; Fransson, E ; Oberparleiter, M ; Nordman, H ; Strand, P ; Salmi, A ; Tala, T</creatorcontrib><description>Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as E ⃗ × B ⃗ shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.</description><identifier>ISSN: 0741-3335</identifier><identifier>ISSN: 1361-6587</identifier><identifier>EISSN: 1361-6587</identifier><identifier>DOI: 10.1088/1361-6587/ab2f45</identifier><identifier>CODEN: PLPHBZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>gyro-fluid ; ITG ; modelling ; particle transport ; turbulence</subject><ispartof>Plasma physics and controlled fusion, 2019, Vol.61 (11), p.115004</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-902566c3b9aaab7bb27f6873edf7cb837c141fb49aa72ef3203d3b18d6a0c9aa3</citedby><cites>FETCH-LOGICAL-c507t-902566c3b9aaab7bb27f6873edf7cb837c141fb49aa72ef3203d3b18d6a0c9aa3</cites><orcidid>0000-0002-2740-7738 ; 0000-0002-8747-3470 ; 0000-0001-7282-3020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6587/ab2f45/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,550,776,780,881,4010,27900,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269142$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-399090$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/513956$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Eriksson, F</creatorcontrib><creatorcontrib>Fransson, E</creatorcontrib><creatorcontrib>Oberparleiter, M</creatorcontrib><creatorcontrib>Nordman, H</creatorcontrib><creatorcontrib>Strand, P</creatorcontrib><creatorcontrib>Salmi, A</creatorcontrib><creatorcontrib>Tala, T</creatorcontrib><title>Interpretative and predictive modelling of Joint European Torus collisionality scans</title><title>Plasma physics and controlled fusion</title><addtitle>PPCF</addtitle><addtitle>Plasma Phys. Control. Fusion</addtitle><description>Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as E ⃗ × B ⃗ shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.</description><subject>gyro-fluid</subject><subject>ITG</subject><subject>modelling</subject><subject>particle transport</subject><subject>turbulence</subject><issn>0741-3335</issn><issn>1361-6587</issn><issn>1361-6587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>D8T</sourceid><recordid>eNqFkc1v1DAQxS0EEkvhzjFXJNKOv5NjVQotqsSBhevIduyuSzaO7KSo_z1eFhVxqJAsWTPze09jP0LeUjil0HVnlCvaKtnpM2NZEPIZ2Ty2npMNaEFbzrl8SV6VcgdAacfUhmyvp8XnOfvFLPHeN2YamloN0f0u92nw4xin2yaF5nOK09JcrjnN3kzNNuW1NC7VeYlpMmNcHprizFRekxfBjMW_-XOfkG8fL7cXV-3Nl0_XF-c3rZOgl7YHJpVy3PbGGKutZTqoTnM_BO1sx7WjggYr6lgzHzgDPnBLu0EZcLXJT8jXo2_56efV4pzj3uQHTCZi9sWb7Hbodmbc-1yweFQygJCUYX2-QOEgYAfCou4Ns4aBlppW1_dPun6I388x5VtcV-R9Dz1UvP0__mPZIVM9FazycORdTqVkHx4VFPAQJR5yw0NueIyySt4dJTHNeJfWXD-74Dy7gJWkhyMBBM5D-Lv9P-yT1r8ARGavQg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Eriksson, F</creator><creator>Fransson, E</creator><creator>Oberparleiter, M</creator><creator>Nordman, H</creator><creator>Strand, P</creator><creator>Salmi, A</creator><creator>Tala, T</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>ACNBI</scope><scope>DF2</scope><scope>ABBSD</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-2740-7738</orcidid><orcidid>https://orcid.org/0000-0002-8747-3470</orcidid><orcidid>https://orcid.org/0000-0001-7282-3020</orcidid></search><sort><creationdate>2019</creationdate><title>Interpretative and predictive modelling of Joint European Torus collisionality scans</title><author>Eriksson, F ; Fransson, E ; Oberparleiter, M ; Nordman, H ; Strand, P ; Salmi, A ; Tala, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-902566c3b9aaab7bb27f6873edf7cb837c141fb49aa72ef3203d3b18d6a0c9aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>gyro-fluid</topic><topic>ITG</topic><topic>modelling</topic><topic>particle transport</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksson, F</creatorcontrib><creatorcontrib>Fransson, E</creatorcontrib><creatorcontrib>Oberparleiter, M</creatorcontrib><creatorcontrib>Nordman, H</creatorcontrib><creatorcontrib>Strand, P</creatorcontrib><creatorcontrib>Salmi, A</creatorcontrib><creatorcontrib>Tala, T</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Uppsala universitet</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Plasma physics and controlled fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eriksson, F</au><au>Fransson, E</au><au>Oberparleiter, M</au><au>Nordman, H</au><au>Strand, P</au><au>Salmi, A</au><au>Tala, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretative and predictive modelling of Joint European Torus collisionality scans</atitle><jtitle>Plasma physics and controlled fusion</jtitle><stitle>PPCF</stitle><addtitle>Plasma Phys. Control. Fusion</addtitle><date>2019</date><risdate>2019</risdate><volume>61</volume><issue>11</issue><spage>115004</spage><pages>115004-</pages><issn>0741-3335</issn><issn>1361-6587</issn><eissn>1361-6587</eissn><coden>PLPHBZ</coden><abstract>Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as E ⃗ × B ⃗ shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6587/ab2f45</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2740-7738</orcidid><orcidid>https://orcid.org/0000-0002-8747-3470</orcidid><orcidid>https://orcid.org/0000-0001-7282-3020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-3335
ispartof Plasma physics and controlled fusion, 2019, Vol.61 (11), p.115004
issn 0741-3335
1361-6587
1361-6587
language eng
recordid cdi_crossref_primary_10_1088_1361_6587_ab2f45
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; SWEPUB Freely available online
subjects gyro-fluid
ITG
modelling
particle transport
turbulence
title Interpretative and predictive modelling of Joint European Torus collisionality scans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretative%20and%20predictive%20modelling%20of%20Joint%20European%20Torus%20collisionality%20scans&rft.jtitle=Plasma%20physics%20and%20controlled%20fusion&rft.au=Eriksson,%20F&rft.date=2019&rft.volume=61&rft.issue=11&rft.spage=115004&rft.pages=115004-&rft.issn=0741-3335&rft.eissn=1361-6587&rft.coden=PLPHBZ&rft_id=info:doi/10.1088/1361-6587/ab2f45&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_kth_269142%3C/swepub_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true