Contactless skin perfusion monitoring with video cameras: tracking pharmacological vasoconstriction and vasodilation using photoplethysmographic changes

Clinical assessment of skin perfusion informs prognosis in critically ill patients. Video camera monitoring could provide an objective, continuous method to monitor skin perfusion. In this prospective, interventional study of healthy volunteers, we tested whether video camera-derived photoplethysmog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement 2022-11, Vol.43 (11), p.115001
Hauptverfasser: Harford, M, Villarroel, M, Jorge, J, Redfern, O, Finnegan, E, Davidson, S, Young, J D, Tarassenko, L, Watkinson, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115001
container_title Physiological measurement
container_volume 43
creator Harford, M
Villarroel, M
Jorge, J
Redfern, O
Finnegan, E
Davidson, S
Young, J D
Tarassenko, L
Watkinson, P
description Clinical assessment of skin perfusion informs prognosis in critically ill patients. Video camera monitoring could provide an objective, continuous method to monitor skin perfusion. In this prospective, interventional study of healthy volunteers, we tested whether video camera-derived photoplethysmography imaging and colour measurements could detect drug-induced skin perfusion changes. We monitored the lower limbs of 30 volunteers using video cameras while administering phenylephrine (a vasoconstrictor) and glyceryl trinitrate (a vasodilator). We report relative pixel intensity changes from baseline, as absolute values are sensitive to environmental factors. The primary outcome was the pre- to peak- infusion green channel amplitude change in the pulsatile PPGi waveform component. Secondary outcomes were pre-to-peak changes in the photoplethysmographic imaging waveform baseline, skin colour hue and skin colour saturation. The 30 participants had a median age of 29 years (IQR 25-34), sixteen (53%) were male. A 34.7% ( = 0.0001) mean decrease in the amplitude of the pulsatile photoplethysmographic imaging waveform occurred following phenylephrine infusion. A 30.7% ( = 0.000004) mean increase occurred following glyceryl trinitrate infusion. The photoplethysmographic imaging baseline decreased with phenylephrine by 2.1% ( = 0.000 02) and increased with glyceryl trinitrate by 0.5% ( = 0.026). Skin colour hue changed in opposite direction with phenylephrine (-0.0013, = 0.0002) and glyceryl trinitrate (+0.0006, = 0.019). Skin colour saturation decreased with phenylephrine by 0.0022 ( = 0.0002), with no significant change observed with glyceryl trinitrate (+0.0005, = 0.21). Drug-induced vasoconstriction and vasodilation are associated with detectable changes in photoplethysmographic imaging waveform parameters and skin hue. Our findings suggest video cameras have great potential for continuous, contactless skin perfusion monitoring.
doi_str_mv 10.1088/1361-6579/ac9c82
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6579_ac9c82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36270506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-aaaf4636e775d438f9498a83e717adba468d6ba82b8d407d77d6b3f65b450bd13</originalsourceid><addsrcrecordid>eNp1kU9PHCEYxklTU7e2d08N1yYdhWUGmN7Mpn9MTLzYM3kHmB10BgiwGr-JH9eZ3epJExLCw_M8b_iB0CklZ5RIeU4ZpxVvRHsOutVy_QGtXqWPaEVaLirGWH2MPud8Swilct18QseMrwVpCF-hp03wBXQZbc443zmPo039Lrvg8RS8KyE5v8UPrgz43hkbsIbJJsg_cUmg75bLOECaQIcxbJ2GEd9DDjr4XJLTZSkCb_aicSPshbl_nwslxNGW4TFPYZsgDk5jPYDf2vwFHfUwZvv1_36C_v3-dbP5W11d_7ncXFxVmvGmVADQ15xxK0Rjaib7tm4lSGYFFWA6qLk0vAO57qSpiTBCzEfW86arG9IZyk4QOfTqFHJOtlcxuQnSo6JELZDVQlQtRNUB8hz5dojEXTdZ8xp4oTobvh8MLkR1G3bJzy9QcbKgaqYonVczf4aKpp-9P97wvjv7GY3-mh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contactless skin perfusion monitoring with video cameras: tracking pharmacological vasoconstriction and vasodilation using photoplethysmographic changes</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Harford, M ; Villarroel, M ; Jorge, J ; Redfern, O ; Finnegan, E ; Davidson, S ; Young, J D ; Tarassenko, L ; Watkinson, P</creator><creatorcontrib>Harford, M ; Villarroel, M ; Jorge, J ; Redfern, O ; Finnegan, E ; Davidson, S ; Young, J D ; Tarassenko, L ; Watkinson, P</creatorcontrib><description>Clinical assessment of skin perfusion informs prognosis in critically ill patients. Video camera monitoring could provide an objective, continuous method to monitor skin perfusion. In this prospective, interventional study of healthy volunteers, we tested whether video camera-derived photoplethysmography imaging and colour measurements could detect drug-induced skin perfusion changes. We monitored the lower limbs of 30 volunteers using video cameras while administering phenylephrine (a vasoconstrictor) and glyceryl trinitrate (a vasodilator). We report relative pixel intensity changes from baseline, as absolute values are sensitive to environmental factors. The primary outcome was the pre- to peak- infusion green channel amplitude change in the pulsatile PPGi waveform component. Secondary outcomes were pre-to-peak changes in the photoplethysmographic imaging waveform baseline, skin colour hue and skin colour saturation. The 30 participants had a median age of 29 years (IQR 25-34), sixteen (53%) were male. A 34.7% ( = 0.0001) mean decrease in the amplitude of the pulsatile photoplethysmographic imaging waveform occurred following phenylephrine infusion. A 30.7% ( = 0.000004) mean increase occurred following glyceryl trinitrate infusion. The photoplethysmographic imaging baseline decreased with phenylephrine by 2.1% ( = 0.000 02) and increased with glyceryl trinitrate by 0.5% ( = 0.026). Skin colour hue changed in opposite direction with phenylephrine (-0.0013, = 0.0002) and glyceryl trinitrate (+0.0006, = 0.019). Skin colour saturation decreased with phenylephrine by 0.0022 ( = 0.0002), with no significant change observed with glyceryl trinitrate (+0.0005, = 0.21). Drug-induced vasoconstriction and vasodilation are associated with detectable changes in photoplethysmographic imaging waveform parameters and skin hue. Our findings suggest video cameras have great potential for continuous, contactless skin perfusion monitoring.</description><identifier>ISSN: 0967-3334</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/ac9c82</identifier><identifier>PMID: 36270506</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; camera ; Female ; Humans ; Male ; monitoring ; Nitroglycerin - pharmacology ; non-contact ; Perfusion ; Phenylephrine - pharmacology ; Prospective Studies ; Vasoconstriction ; Vasodilation ; Vasodilator Agents - pharmacology</subject><ispartof>Physiological measurement, 2022-11, Vol.43 (11), p.115001</ispartof><rights>2022 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-aaaf4636e775d438f9498a83e717adba468d6ba82b8d407d77d6b3f65b450bd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6579/ac9c82/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36270506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harford, M</creatorcontrib><creatorcontrib>Villarroel, M</creatorcontrib><creatorcontrib>Jorge, J</creatorcontrib><creatorcontrib>Redfern, O</creatorcontrib><creatorcontrib>Finnegan, E</creatorcontrib><creatorcontrib>Davidson, S</creatorcontrib><creatorcontrib>Young, J D</creatorcontrib><creatorcontrib>Tarassenko, L</creatorcontrib><creatorcontrib>Watkinson, P</creatorcontrib><title>Contactless skin perfusion monitoring with video cameras: tracking pharmacological vasoconstriction and vasodilation using photoplethysmographic changes</title><title>Physiological measurement</title><addtitle>PMEA</addtitle><addtitle>Physiol. Meas</addtitle><description>Clinical assessment of skin perfusion informs prognosis in critically ill patients. Video camera monitoring could provide an objective, continuous method to monitor skin perfusion. In this prospective, interventional study of healthy volunteers, we tested whether video camera-derived photoplethysmography imaging and colour measurements could detect drug-induced skin perfusion changes. We monitored the lower limbs of 30 volunteers using video cameras while administering phenylephrine (a vasoconstrictor) and glyceryl trinitrate (a vasodilator). We report relative pixel intensity changes from baseline, as absolute values are sensitive to environmental factors. The primary outcome was the pre- to peak- infusion green channel amplitude change in the pulsatile PPGi waveform component. Secondary outcomes were pre-to-peak changes in the photoplethysmographic imaging waveform baseline, skin colour hue and skin colour saturation. The 30 participants had a median age of 29 years (IQR 25-34), sixteen (53%) were male. A 34.7% ( = 0.0001) mean decrease in the amplitude of the pulsatile photoplethysmographic imaging waveform occurred following phenylephrine infusion. A 30.7% ( = 0.000004) mean increase occurred following glyceryl trinitrate infusion. The photoplethysmographic imaging baseline decreased with phenylephrine by 2.1% ( = 0.000 02) and increased with glyceryl trinitrate by 0.5% ( = 0.026). Skin colour hue changed in opposite direction with phenylephrine (-0.0013, = 0.0002) and glyceryl trinitrate (+0.0006, = 0.019). Skin colour saturation decreased with phenylephrine by 0.0022 ( = 0.0002), with no significant change observed with glyceryl trinitrate (+0.0005, = 0.21). Drug-induced vasoconstriction and vasodilation are associated with detectable changes in photoplethysmographic imaging waveform parameters and skin hue. Our findings suggest video cameras have great potential for continuous, contactless skin perfusion monitoring.</description><subject>Adult</subject><subject>camera</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>monitoring</subject><subject>Nitroglycerin - pharmacology</subject><subject>non-contact</subject><subject>Perfusion</subject><subject>Phenylephrine - pharmacology</subject><subject>Prospective Studies</subject><subject>Vasoconstriction</subject><subject>Vasodilation</subject><subject>Vasodilator Agents - pharmacology</subject><issn>0967-3334</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU9PHCEYxklTU7e2d08N1yYdhWUGmN7Mpn9MTLzYM3kHmB10BgiwGr-JH9eZ3epJExLCw_M8b_iB0CklZ5RIeU4ZpxVvRHsOutVy_QGtXqWPaEVaLirGWH2MPud8Swilct18QseMrwVpCF-hp03wBXQZbc443zmPo039Lrvg8RS8KyE5v8UPrgz43hkbsIbJJsg_cUmg75bLOECaQIcxbJ2GEd9DDjr4XJLTZSkCb_aicSPshbl_nwslxNGW4TFPYZsgDk5jPYDf2vwFHfUwZvv1_36C_v3-dbP5W11d_7ncXFxVmvGmVADQ15xxK0Rjaib7tm4lSGYFFWA6qLk0vAO57qSpiTBCzEfW86arG9IZyk4QOfTqFHJOtlcxuQnSo6JELZDVQlQtRNUB8hz5dojEXTdZ8xp4oTobvh8MLkR1G3bJzy9QcbKgaqYonVczf4aKpp-9P97wvjv7GY3-mh4</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Harford, M</creator><creator>Villarroel, M</creator><creator>Jorge, J</creator><creator>Redfern, O</creator><creator>Finnegan, E</creator><creator>Davidson, S</creator><creator>Young, J D</creator><creator>Tarassenko, L</creator><creator>Watkinson, P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221130</creationdate><title>Contactless skin perfusion monitoring with video cameras: tracking pharmacological vasoconstriction and vasodilation using photoplethysmographic changes</title><author>Harford, M ; Villarroel, M ; Jorge, J ; Redfern, O ; Finnegan, E ; Davidson, S ; Young, J D ; Tarassenko, L ; Watkinson, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-aaaf4636e775d438f9498a83e717adba468d6ba82b8d407d77d6b3f65b450bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>camera</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>monitoring</topic><topic>Nitroglycerin - pharmacology</topic><topic>non-contact</topic><topic>Perfusion</topic><topic>Phenylephrine - pharmacology</topic><topic>Prospective Studies</topic><topic>Vasoconstriction</topic><topic>Vasodilation</topic><topic>Vasodilator Agents - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harford, M</creatorcontrib><creatorcontrib>Villarroel, M</creatorcontrib><creatorcontrib>Jorge, J</creatorcontrib><creatorcontrib>Redfern, O</creatorcontrib><creatorcontrib>Finnegan, E</creatorcontrib><creatorcontrib>Davidson, S</creatorcontrib><creatorcontrib>Young, J D</creatorcontrib><creatorcontrib>Tarassenko, L</creatorcontrib><creatorcontrib>Watkinson, P</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harford, M</au><au>Villarroel, M</au><au>Jorge, J</au><au>Redfern, O</au><au>Finnegan, E</au><au>Davidson, S</au><au>Young, J D</au><au>Tarassenko, L</au><au>Watkinson, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contactless skin perfusion monitoring with video cameras: tracking pharmacological vasoconstriction and vasodilation using photoplethysmographic changes</atitle><jtitle>Physiological measurement</jtitle><stitle>PMEA</stitle><addtitle>Physiol. Meas</addtitle><date>2022-11-30</date><risdate>2022</risdate><volume>43</volume><issue>11</issue><spage>115001</spage><pages>115001-</pages><issn>0967-3334</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>Clinical assessment of skin perfusion informs prognosis in critically ill patients. Video camera monitoring could provide an objective, continuous method to monitor skin perfusion. In this prospective, interventional study of healthy volunteers, we tested whether video camera-derived photoplethysmography imaging and colour measurements could detect drug-induced skin perfusion changes. We monitored the lower limbs of 30 volunteers using video cameras while administering phenylephrine (a vasoconstrictor) and glyceryl trinitrate (a vasodilator). We report relative pixel intensity changes from baseline, as absolute values are sensitive to environmental factors. The primary outcome was the pre- to peak- infusion green channel amplitude change in the pulsatile PPGi waveform component. Secondary outcomes were pre-to-peak changes in the photoplethysmographic imaging waveform baseline, skin colour hue and skin colour saturation. The 30 participants had a median age of 29 years (IQR 25-34), sixteen (53%) were male. A 34.7% ( = 0.0001) mean decrease in the amplitude of the pulsatile photoplethysmographic imaging waveform occurred following phenylephrine infusion. A 30.7% ( = 0.000004) mean increase occurred following glyceryl trinitrate infusion. The photoplethysmographic imaging baseline decreased with phenylephrine by 2.1% ( = 0.000 02) and increased with glyceryl trinitrate by 0.5% ( = 0.026). Skin colour hue changed in opposite direction with phenylephrine (-0.0013, = 0.0002) and glyceryl trinitrate (+0.0006, = 0.019). Skin colour saturation decreased with phenylephrine by 0.0022 ( = 0.0002), with no significant change observed with glyceryl trinitrate (+0.0005, = 0.21). Drug-induced vasoconstriction and vasodilation are associated with detectable changes in photoplethysmographic imaging waveform parameters and skin hue. Our findings suggest video cameras have great potential for continuous, contactless skin perfusion monitoring.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36270506</pmid><doi>10.1088/1361-6579/ac9c82</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0967-3334
ispartof Physiological measurement, 2022-11, Vol.43 (11), p.115001
issn 0967-3334
1361-6579
language eng
recordid cdi_crossref_primary_10_1088_1361_6579_ac9c82
source Institute of Physics Journals; MEDLINE
subjects Adult
camera
Female
Humans
Male
monitoring
Nitroglycerin - pharmacology
non-contact
Perfusion
Phenylephrine - pharmacology
Prospective Studies
Vasoconstriction
Vasodilation
Vasodilator Agents - pharmacology
title Contactless skin perfusion monitoring with video cameras: tracking pharmacological vasoconstriction and vasodilation using photoplethysmographic changes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contactless%20skin%20perfusion%20monitoring%20with%20video%20cameras:%20tracking%20pharmacological%20vasoconstriction%20and%20vasodilation%20using%20photoplethysmographic%20changes&rft.jtitle=Physiological%20measurement&rft.au=Harford,%20M&rft.date=2022-11-30&rft.volume=43&rft.issue=11&rft.spage=115001&rft.pages=115001-&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/ac9c82&rft_dat=%3Cpubmed_cross%3E36270506%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36270506&rfr_iscdi=true