Improving pedicle screw path planning by vertebral posture estimation

Robot-assisted pedicle screw placement in spine surgery can reduce the complications associated with the screw placement and reduce the hospital return counts due to malfunctions. However, it requires accurate planning for high quality procedures. The state-of-the-art technologies reported in the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2023-09, Vol.68 (18), p.185011
Hauptverfasser: Zhang, Yunxian, Liu, Wenhai, Zhao, Jingwei, Wang, Dan, Peng, Fan, Cui, Shangqi, Wang, Binbin, Shi, Zhe, Liu, Bo, He, Da, Yang, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 185011
container_title Physics in medicine & biology
container_volume 68
creator Zhang, Yunxian
Liu, Wenhai
Zhao, Jingwei
Wang, Dan
Peng, Fan
Cui, Shangqi
Wang, Binbin
Shi, Zhe
Liu, Bo
He, Da
Yang, Zhi
description Robot-assisted pedicle screw placement in spine surgery can reduce the complications associated with the screw placement and reduce the hospital return counts due to malfunctions. However, it requires accurate planning for high quality procedures. The state-of-the-art technologies reported in the literature either ignore the anatomical variations across vertebrae or require substantial human interactions. We present an improved approach that achieves the pedicle screw path planning through multiple projections of a numerically re-oriented vertebra with the estimated posture. Approach: We proposed an improved YOLO-type neural network model (YOLOPOSE3D) to estimate the posture of a vertebra before the pedicle path planning. In YOLOPOSE3D, the vertebral posture is given as a rotation quaternion and 3D location coordinates by optimizing the intersection over union (IoU) of the vertebra with the predicted posture and the actual posture. Then, a new local coordinate system is established for the vertebra based on the estimated posture. Finally, the optimal pedicle screw path trajectory is determined from the multiple projections of the vertebra in the local coordinates. Main results:The experimental results in difficult cases of scoliosis showed that the new YOLOPOSE3D network could detect the location and posture of the vertebra accurately with average translation and orientation errors as small as 1.55 mm and 2.55. The screw path planning achieved 83.1% success rate without breaking the pedicle cortex for the lumbar vertebral L1-L5, which is better than that of doctor's manual planning, 82.4%. With the clinical class A requirement of allowing less than 2mm out of the pedicle cortex, the success rate achieved nearly 100%. Significance: The proposed YOLOPOSED3D method can accurately determine the vertebral postures. With the improved posture prior, better clinical outcomes can be achieved for pedicle screw placement in spine internal fixation procedures. &#xD.
doi_str_mv 10.1088/1361-6560/ace753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ace753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838241037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-5d1f7ed528b785fada7beb5b4e4bdd4bbfa09ef99c3952e8a2cdb77f7e25a0183</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMobk7vnqRHD9YlTdO0RxlTBwMveg75eKsd_YhJO9l_b8rmvCgEAsnzvM_z_hC6Jvie4DyfE5qROGMZnksNnNETND0-naIpxpTEBWFsgi6832BMSJ6k52hCeZomJEmnaLlqrOu2VfseWTCVriHy2sFXZGX_Edlatu34p3bRFlwPysk6sp3vBwcR-L5qZF917SU6K2Xt4epwz9Db4_J18RyvX55Wi4d1rGmW9jEzpORgWJIrnrNSGskVKKZSSJUxqVKlxAWURaFpwRLIZaKN4jx4EiYxyekM3e7nhs6fQ8gXTeU11KEmdIMXSU7DggRTHqR4L9Wu895BKawLbd1OECxGeGIkJUZSYg8vWG4O0wfVgDkafmj9xledFZtucG1YVthGiSyMGw8LiIU1ZZDe_SH9N_obPZ6Haw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838241037</pqid></control><display><type>article</type><title>Improving pedicle screw path planning by vertebral posture estimation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhang, Yunxian ; Liu, Wenhai ; Zhao, Jingwei ; Wang, Dan ; Peng, Fan ; Cui, Shangqi ; Wang, Binbin ; Shi, Zhe ; Liu, Bo ; He, Da ; Yang, Zhi</creator><creatorcontrib>Zhang, Yunxian ; Liu, Wenhai ; Zhao, Jingwei ; Wang, Dan ; Peng, Fan ; Cui, Shangqi ; Wang, Binbin ; Shi, Zhe ; Liu, Bo ; He, Da ; Yang, Zhi</creatorcontrib><description>Robot-assisted pedicle screw placement in spine surgery can reduce the complications associated with the screw placement and reduce the hospital return counts due to malfunctions. However, it requires accurate planning for high quality procedures. The state-of-the-art technologies reported in the literature either ignore the anatomical variations across vertebrae or require substantial human interactions. We present an improved approach that achieves the pedicle screw path planning through multiple projections of a numerically re-oriented vertebra with the estimated posture. Approach: We proposed an improved YOLO-type neural network model (YOLOPOSE3D) to estimate the posture of a vertebra before the pedicle path planning. In YOLOPOSE3D, the vertebral posture is given as a rotation quaternion and 3D location coordinates by optimizing the intersection over union (IoU) of the vertebra with the predicted posture and the actual posture. Then, a new local coordinate system is established for the vertebra based on the estimated posture. Finally, the optimal pedicle screw path trajectory is determined from the multiple projections of the vertebra in the local coordinates. Main results:The experimental results in difficult cases of scoliosis showed that the new YOLOPOSE3D network could detect the location and posture of the vertebra accurately with average translation and orientation errors as small as 1.55 mm and 2.55. The screw path planning achieved 83.1% success rate without breaking the pedicle cortex for the lumbar vertebral L1-L5, which is better than that of doctor's manual planning, 82.4%. With the clinical class A requirement of allowing less than 2mm out of the pedicle cortex, the success rate achieved nearly 100%. Significance: The proposed YOLOPOSED3D method can accurately determine the vertebral postures. With the improved posture prior, better clinical outcomes can be achieved for pedicle screw placement in spine internal fixation procedures. &amp;#xD.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ace753</identifier><identifier>PMID: 37442124</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>pedicle screw path planning ; robotic surgery ; scoliosis spines ; spine internal fixation ; vertebral posture detection</subject><ispartof>Physics in medicine &amp; biology, 2023-09, Vol.68 (18), p.185011</ispartof><rights>2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-5d1f7ed528b785fada7beb5b4e4bdd4bbfa09ef99c3952e8a2cdb77f7e25a0183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ace753/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37442124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yunxian</creatorcontrib><creatorcontrib>Liu, Wenhai</creatorcontrib><creatorcontrib>Zhao, Jingwei</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Peng, Fan</creatorcontrib><creatorcontrib>Cui, Shangqi</creatorcontrib><creatorcontrib>Wang, Binbin</creatorcontrib><creatorcontrib>Shi, Zhe</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>He, Da</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><title>Improving pedicle screw path planning by vertebral posture estimation</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Robot-assisted pedicle screw placement in spine surgery can reduce the complications associated with the screw placement and reduce the hospital return counts due to malfunctions. However, it requires accurate planning for high quality procedures. The state-of-the-art technologies reported in the literature either ignore the anatomical variations across vertebrae or require substantial human interactions. We present an improved approach that achieves the pedicle screw path planning through multiple projections of a numerically re-oriented vertebra with the estimated posture. Approach: We proposed an improved YOLO-type neural network model (YOLOPOSE3D) to estimate the posture of a vertebra before the pedicle path planning. In YOLOPOSE3D, the vertebral posture is given as a rotation quaternion and 3D location coordinates by optimizing the intersection over union (IoU) of the vertebra with the predicted posture and the actual posture. Then, a new local coordinate system is established for the vertebra based on the estimated posture. Finally, the optimal pedicle screw path trajectory is determined from the multiple projections of the vertebra in the local coordinates. Main results:The experimental results in difficult cases of scoliosis showed that the new YOLOPOSE3D network could detect the location and posture of the vertebra accurately with average translation and orientation errors as small as 1.55 mm and 2.55. The screw path planning achieved 83.1% success rate without breaking the pedicle cortex for the lumbar vertebral L1-L5, which is better than that of doctor's manual planning, 82.4%. With the clinical class A requirement of allowing less than 2mm out of the pedicle cortex, the success rate achieved nearly 100%. Significance: The proposed YOLOPOSED3D method can accurately determine the vertebral postures. With the improved posture prior, better clinical outcomes can be achieved for pedicle screw placement in spine internal fixation procedures. &amp;#xD.</description><subject>pedicle screw path planning</subject><subject>robotic surgery</subject><subject>scoliosis spines</subject><subject>spine internal fixation</subject><subject>vertebral posture detection</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1LwzAYxoMobk7vnqRHD9YlTdO0RxlTBwMveg75eKsd_YhJO9l_b8rmvCgEAsnzvM_z_hC6Jvie4DyfE5qROGMZnksNnNETND0-naIpxpTEBWFsgi6832BMSJ6k52hCeZomJEmnaLlqrOu2VfseWTCVriHy2sFXZGX_Edlatu34p3bRFlwPysk6sp3vBwcR-L5qZF917SU6K2Xt4epwz9Db4_J18RyvX55Wi4d1rGmW9jEzpORgWJIrnrNSGskVKKZSSJUxqVKlxAWURaFpwRLIZaKN4jx4EiYxyekM3e7nhs6fQ8gXTeU11KEmdIMXSU7DggRTHqR4L9Wu895BKawLbd1OECxGeGIkJUZSYg8vWG4O0wfVgDkafmj9xledFZtucG1YVthGiSyMGw8LiIU1ZZDe_SH9N_obPZ6Haw</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Zhang, Yunxian</creator><creator>Liu, Wenhai</creator><creator>Zhao, Jingwei</creator><creator>Wang, Dan</creator><creator>Peng, Fan</creator><creator>Cui, Shangqi</creator><creator>Wang, Binbin</creator><creator>Shi, Zhe</creator><creator>Liu, Bo</creator><creator>He, Da</creator><creator>Yang, Zhi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230921</creationdate><title>Improving pedicle screw path planning by vertebral posture estimation</title><author>Zhang, Yunxian ; Liu, Wenhai ; Zhao, Jingwei ; Wang, Dan ; Peng, Fan ; Cui, Shangqi ; Wang, Binbin ; Shi, Zhe ; Liu, Bo ; He, Da ; Yang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-5d1f7ed528b785fada7beb5b4e4bdd4bbfa09ef99c3952e8a2cdb77f7e25a0183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>pedicle screw path planning</topic><topic>robotic surgery</topic><topic>scoliosis spines</topic><topic>spine internal fixation</topic><topic>vertebral posture detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yunxian</creatorcontrib><creatorcontrib>Liu, Wenhai</creatorcontrib><creatorcontrib>Zhao, Jingwei</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Peng, Fan</creatorcontrib><creatorcontrib>Cui, Shangqi</creatorcontrib><creatorcontrib>Wang, Binbin</creatorcontrib><creatorcontrib>Shi, Zhe</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>He, Da</creatorcontrib><creatorcontrib>Yang, Zhi</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yunxian</au><au>Liu, Wenhai</au><au>Zhao, Jingwei</au><au>Wang, Dan</au><au>Peng, Fan</au><au>Cui, Shangqi</au><au>Wang, Binbin</au><au>Shi, Zhe</au><au>Liu, Bo</au><au>He, Da</au><au>Yang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving pedicle screw path planning by vertebral posture estimation</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2023-09-21</date><risdate>2023</risdate><volume>68</volume><issue>18</issue><spage>185011</spage><pages>185011-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Robot-assisted pedicle screw placement in spine surgery can reduce the complications associated with the screw placement and reduce the hospital return counts due to malfunctions. However, it requires accurate planning for high quality procedures. The state-of-the-art technologies reported in the literature either ignore the anatomical variations across vertebrae or require substantial human interactions. We present an improved approach that achieves the pedicle screw path planning through multiple projections of a numerically re-oriented vertebra with the estimated posture. Approach: We proposed an improved YOLO-type neural network model (YOLOPOSE3D) to estimate the posture of a vertebra before the pedicle path planning. In YOLOPOSE3D, the vertebral posture is given as a rotation quaternion and 3D location coordinates by optimizing the intersection over union (IoU) of the vertebra with the predicted posture and the actual posture. Then, a new local coordinate system is established for the vertebra based on the estimated posture. Finally, the optimal pedicle screw path trajectory is determined from the multiple projections of the vertebra in the local coordinates. Main results:The experimental results in difficult cases of scoliosis showed that the new YOLOPOSE3D network could detect the location and posture of the vertebra accurately with average translation and orientation errors as small as 1.55 mm and 2.55. The screw path planning achieved 83.1% success rate without breaking the pedicle cortex for the lumbar vertebral L1-L5, which is better than that of doctor's manual planning, 82.4%. With the clinical class A requirement of allowing less than 2mm out of the pedicle cortex, the success rate achieved nearly 100%. Significance: The proposed YOLOPOSED3D method can accurately determine the vertebral postures. With the improved posture prior, better clinical outcomes can be achieved for pedicle screw placement in spine internal fixation procedures. &amp;#xD.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>37442124</pmid><doi>10.1088/1361-6560/ace753</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2023-09, Vol.68 (18), p.185011
issn 0031-9155
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_ace753
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects pedicle screw path planning
robotic surgery
scoliosis spines
spine internal fixation
vertebral posture detection
title Improving pedicle screw path planning by vertebral posture estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20pedicle%20screw%20path%20planning%20by%20vertebral%20posture%20estimation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Zhang,%20Yunxian&rft.date=2023-09-21&rft.volume=68&rft.issue=18&rft.spage=185011&rft.pages=185011-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ace753&rft_dat=%3Cproquest_cross%3E2838241037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838241037&rft_id=info:pmid/37442124&rfr_iscdi=true