ProTheRaMon—a GATE simulation framework for proton therapy range monitoring using PET imaging
This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, p...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2022-11, Vol.67 (22), p.224002 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 224002 |
container_title | Physics in medicine & biology |
container_volume | 67 |
creator | Borys, Damian Baran, Jakub Brzeziński, Karol Gajewski, Jan Chug, Neha Coussat, Aurelien Czerwiński, Eryk Dadgar, Meysam Dulski, Kamil Eliyan, Kavya V Gajos, Aleksander Kacprzak, Krzysztof Kapłon, Łukasz Klimaszewski, Konrad Konieczka, Paweł Kopeć, Renata Korcyl, Grzegorz Kozik, Tomasz Krzemień, Wojciech Kumar, Deepak Lomax, Antony J McNamara, Keegan Niedźwiecki, Szymon Olko, Paweł Panek, Dominik Parzych, Szymon Perez del Rio, Elena Raczyński, Lech Sharma, Sushil Shivani Shopa, Roman Y Skóra, Tomasz Skurzok, Magdalena Stasica, Paulina Stępień, Ewa Ł Tayefi, Keyvan Tayefi, Faranak Weber, Damien C Winterhalter, Carla Wiślicki, Wojciech Moskal, Paweł Rucinski, Antoni |
description | This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland.
The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design.
ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized.
We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github. |
doi_str_mv | 10.1088/1361-6560/ac944c |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ac944c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36137551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-f5203f77b975716334d05cc8d94fef77a635c29e6e969139c984f783a7b7eb103</originalsourceid><addsrcrecordid>eNp1kE1PwyAAhonRuDm9ezIcPVgHpUA5LsucJjMupp4JbWHrXEtD25jd_BH-Qn-JNFVPmhAgb56XjweAS4xuMYrjKSYMB4wyNFWZiKLsCIx_o2MwRojgQGBKR-CsaXYIYRyH0SkYeYZwSvEYyLWzyVY_q0dbfb5_KLicJQvYFGW3V21hK2icKvWbda_QWAdrZ1sftlvtVH2ATlUbDUtbFa11RbWBXdPP60UCi1Jt_P4cnBi1b_TF9zoBL3eLZH4frJ6WD_PZKsgijNvA0BARw3kqOOWYERLliGZZnIvIaJ8rRmgWCs20YAITkYk4MjwmiqdcpxiRCUDDuZmzTeO0kbXzT3AHiZHsXclejOzFyMGVr1wNlbpLS53_Fn7keOB6AApby53tXOV_IOsylYzLMPQjQiiUdW48evMH-u_VX22SgTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ProTheRaMon—a GATE simulation framework for proton therapy range monitoring using PET imaging</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Borys, Damian ; Baran, Jakub ; Brzeziński, Karol ; Gajewski, Jan ; Chug, Neha ; Coussat, Aurelien ; Czerwiński, Eryk ; Dadgar, Meysam ; Dulski, Kamil ; Eliyan, Kavya V ; Gajos, Aleksander ; Kacprzak, Krzysztof ; Kapłon, Łukasz ; Klimaszewski, Konrad ; Konieczka, Paweł ; Kopeć, Renata ; Korcyl, Grzegorz ; Kozik, Tomasz ; Krzemień, Wojciech ; Kumar, Deepak ; Lomax, Antony J ; McNamara, Keegan ; Niedźwiecki, Szymon ; Olko, Paweł ; Panek, Dominik ; Parzych, Szymon ; Perez del Rio, Elena ; Raczyński, Lech ; Sharma, Sushil ; Shivani ; Shopa, Roman Y ; Skóra, Tomasz ; Skurzok, Magdalena ; Stasica, Paulina ; Stępień, Ewa Ł ; Tayefi, Keyvan ; Tayefi, Faranak ; Weber, Damien C ; Winterhalter, Carla ; Wiślicki, Wojciech ; Moskal, Paweł ; Rucinski, Antoni</creator><creatorcontrib>Borys, Damian ; Baran, Jakub ; Brzeziński, Karol ; Gajewski, Jan ; Chug, Neha ; Coussat, Aurelien ; Czerwiński, Eryk ; Dadgar, Meysam ; Dulski, Kamil ; Eliyan, Kavya V ; Gajos, Aleksander ; Kacprzak, Krzysztof ; Kapłon, Łukasz ; Klimaszewski, Konrad ; Konieczka, Paweł ; Kopeć, Renata ; Korcyl, Grzegorz ; Kozik, Tomasz ; Krzemień, Wojciech ; Kumar, Deepak ; Lomax, Antony J ; McNamara, Keegan ; Niedźwiecki, Szymon ; Olko, Paweł ; Panek, Dominik ; Parzych, Szymon ; Perez del Rio, Elena ; Raczyński, Lech ; Sharma, Sushil ; Shivani ; Shopa, Roman Y ; Skóra, Tomasz ; Skurzok, Magdalena ; Stasica, Paulina ; Stępień, Ewa Ł ; Tayefi, Keyvan ; Tayefi, Faranak ; Weber, Damien C ; Winterhalter, Carla ; Wiślicki, Wojciech ; Moskal, Paweł ; Rucinski, Antoni</creatorcontrib><description>This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland.
The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design.
ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized.
We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ac944c</identifier><identifier>PMID: 36137551</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>GATE ; J-PET ; medical imaging ; Monte Carlo simulations ; proton therapy</subject><ispartof>Physics in medicine & biology, 2022-11, Vol.67 (22), p.224002</ispartof><rights>2022 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-f5203f77b975716334d05cc8d94fef77a635c29e6e969139c984f783a7b7eb103</citedby><cites>FETCH-LOGICAL-c411t-f5203f77b975716334d05cc8d94fef77a635c29e6e969139c984f783a7b7eb103</cites><orcidid>0000-0002-4794-5154 ; 0000-0001-5765-6308 ; 0000-0002-7536-6459 ; 0000-0002-9795-5158 ; 0000-0001-5554-8178 ; 0000-0002-5815-4606 ; 0000-0001-8764-1588 ; 0000-0001-6322-0615 ; 0000-0002-7416-5145 ; 0000-0002-1089-5050 ; 0000-0002-4229-3548 ; 0000-0003-1166-8236 ; 0000-0003-3589-1715 ; 0000-0002-0919-9859 ; 0000-0002-4946-3837 ; 0000-0003-0741-5922 ; 0000-0001-6859-0180 ; 0000-0003-0229-2601 ; 0000-0001-7761-4084 ; 0000-0002-5076-3175 ; 0000-0002-7109-1136 ; 0000-0002-4093-8162 ; 0000-0002-9546-358X ; 0000-0002-2203-0425 ; 0000-0003-1636-3706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ac944c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36137551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borys, Damian</creatorcontrib><creatorcontrib>Baran, Jakub</creatorcontrib><creatorcontrib>Brzeziński, Karol</creatorcontrib><creatorcontrib>Gajewski, Jan</creatorcontrib><creatorcontrib>Chug, Neha</creatorcontrib><creatorcontrib>Coussat, Aurelien</creatorcontrib><creatorcontrib>Czerwiński, Eryk</creatorcontrib><creatorcontrib>Dadgar, Meysam</creatorcontrib><creatorcontrib>Dulski, Kamil</creatorcontrib><creatorcontrib>Eliyan, Kavya V</creatorcontrib><creatorcontrib>Gajos, Aleksander</creatorcontrib><creatorcontrib>Kacprzak, Krzysztof</creatorcontrib><creatorcontrib>Kapłon, Łukasz</creatorcontrib><creatorcontrib>Klimaszewski, Konrad</creatorcontrib><creatorcontrib>Konieczka, Paweł</creatorcontrib><creatorcontrib>Kopeć, Renata</creatorcontrib><creatorcontrib>Korcyl, Grzegorz</creatorcontrib><creatorcontrib>Kozik, Tomasz</creatorcontrib><creatorcontrib>Krzemień, Wojciech</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Lomax, Antony J</creatorcontrib><creatorcontrib>McNamara, Keegan</creatorcontrib><creatorcontrib>Niedźwiecki, Szymon</creatorcontrib><creatorcontrib>Olko, Paweł</creatorcontrib><creatorcontrib>Panek, Dominik</creatorcontrib><creatorcontrib>Parzych, Szymon</creatorcontrib><creatorcontrib>Perez del Rio, Elena</creatorcontrib><creatorcontrib>Raczyński, Lech</creatorcontrib><creatorcontrib>Sharma, Sushil</creatorcontrib><creatorcontrib>Shivani</creatorcontrib><creatorcontrib>Shopa, Roman Y</creatorcontrib><creatorcontrib>Skóra, Tomasz</creatorcontrib><creatorcontrib>Skurzok, Magdalena</creatorcontrib><creatorcontrib>Stasica, Paulina</creatorcontrib><creatorcontrib>Stępień, Ewa Ł</creatorcontrib><creatorcontrib>Tayefi, Keyvan</creatorcontrib><creatorcontrib>Tayefi, Faranak</creatorcontrib><creatorcontrib>Weber, Damien C</creatorcontrib><creatorcontrib>Winterhalter, Carla</creatorcontrib><creatorcontrib>Wiślicki, Wojciech</creatorcontrib><creatorcontrib>Moskal, Paweł</creatorcontrib><creatorcontrib>Rucinski, Antoni</creatorcontrib><title>ProTheRaMon—a GATE simulation framework for proton therapy range monitoring using PET imaging</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland.
The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design.
ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized.
We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.</description><subject>GATE</subject><subject>J-PET</subject><subject>medical imaging</subject><subject>Monte Carlo simulations</subject><subject>proton therapy</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1PwyAAhonRuDm9ezIcPVgHpUA5LsucJjMupp4JbWHrXEtD25jd_BH-Qn-JNFVPmhAgb56XjweAS4xuMYrjKSYMB4wyNFWZiKLsCIx_o2MwRojgQGBKR-CsaXYIYRyH0SkYeYZwSvEYyLWzyVY_q0dbfb5_KLicJQvYFGW3V21hK2icKvWbda_QWAdrZ1sftlvtVH2ATlUbDUtbFa11RbWBXdPP60UCi1Jt_P4cnBi1b_TF9zoBL3eLZH4frJ6WD_PZKsgijNvA0BARw3kqOOWYERLliGZZnIvIaJ8rRmgWCs20YAITkYk4MjwmiqdcpxiRCUDDuZmzTeO0kbXzT3AHiZHsXclejOzFyMGVr1wNlbpLS53_Fn7keOB6AApby53tXOV_IOsylYzLMPQjQiiUdW48evMH-u_VX22SgTc</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Borys, Damian</creator><creator>Baran, Jakub</creator><creator>Brzeziński, Karol</creator><creator>Gajewski, Jan</creator><creator>Chug, Neha</creator><creator>Coussat, Aurelien</creator><creator>Czerwiński, Eryk</creator><creator>Dadgar, Meysam</creator><creator>Dulski, Kamil</creator><creator>Eliyan, Kavya V</creator><creator>Gajos, Aleksander</creator><creator>Kacprzak, Krzysztof</creator><creator>Kapłon, Łukasz</creator><creator>Klimaszewski, Konrad</creator><creator>Konieczka, Paweł</creator><creator>Kopeć, Renata</creator><creator>Korcyl, Grzegorz</creator><creator>Kozik, Tomasz</creator><creator>Krzemień, Wojciech</creator><creator>Kumar, Deepak</creator><creator>Lomax, Antony J</creator><creator>McNamara, Keegan</creator><creator>Niedźwiecki, Szymon</creator><creator>Olko, Paweł</creator><creator>Panek, Dominik</creator><creator>Parzych, Szymon</creator><creator>Perez del Rio, Elena</creator><creator>Raczyński, Lech</creator><creator>Sharma, Sushil</creator><creator>Shivani</creator><creator>Shopa, Roman Y</creator><creator>Skóra, Tomasz</creator><creator>Skurzok, Magdalena</creator><creator>Stasica, Paulina</creator><creator>Stępień, Ewa Ł</creator><creator>Tayefi, Keyvan</creator><creator>Tayefi, Faranak</creator><creator>Weber, Damien C</creator><creator>Winterhalter, Carla</creator><creator>Wiślicki, Wojciech</creator><creator>Moskal, Paweł</creator><creator>Rucinski, Antoni</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4794-5154</orcidid><orcidid>https://orcid.org/0000-0001-5765-6308</orcidid><orcidid>https://orcid.org/0000-0002-7536-6459</orcidid><orcidid>https://orcid.org/0000-0002-9795-5158</orcidid><orcidid>https://orcid.org/0000-0001-5554-8178</orcidid><orcidid>https://orcid.org/0000-0002-5815-4606</orcidid><orcidid>https://orcid.org/0000-0001-8764-1588</orcidid><orcidid>https://orcid.org/0000-0001-6322-0615</orcidid><orcidid>https://orcid.org/0000-0002-7416-5145</orcidid><orcidid>https://orcid.org/0000-0002-1089-5050</orcidid><orcidid>https://orcid.org/0000-0002-4229-3548</orcidid><orcidid>https://orcid.org/0000-0003-1166-8236</orcidid><orcidid>https://orcid.org/0000-0003-3589-1715</orcidid><orcidid>https://orcid.org/0000-0002-0919-9859</orcidid><orcidid>https://orcid.org/0000-0002-4946-3837</orcidid><orcidid>https://orcid.org/0000-0003-0741-5922</orcidid><orcidid>https://orcid.org/0000-0001-6859-0180</orcidid><orcidid>https://orcid.org/0000-0003-0229-2601</orcidid><orcidid>https://orcid.org/0000-0001-7761-4084</orcidid><orcidid>https://orcid.org/0000-0002-5076-3175</orcidid><orcidid>https://orcid.org/0000-0002-7109-1136</orcidid><orcidid>https://orcid.org/0000-0002-4093-8162</orcidid><orcidid>https://orcid.org/0000-0002-9546-358X</orcidid><orcidid>https://orcid.org/0000-0002-2203-0425</orcidid><orcidid>https://orcid.org/0000-0003-1636-3706</orcidid></search><sort><creationdate>20221121</creationdate><title>ProTheRaMon—a GATE simulation framework for proton therapy range monitoring using PET imaging</title><author>Borys, Damian ; Baran, Jakub ; Brzeziński, Karol ; Gajewski, Jan ; Chug, Neha ; Coussat, Aurelien ; Czerwiński, Eryk ; Dadgar, Meysam ; Dulski, Kamil ; Eliyan, Kavya V ; Gajos, Aleksander ; Kacprzak, Krzysztof ; Kapłon, Łukasz ; Klimaszewski, Konrad ; Konieczka, Paweł ; Kopeć, Renata ; Korcyl, Grzegorz ; Kozik, Tomasz ; Krzemień, Wojciech ; Kumar, Deepak ; Lomax, Antony J ; McNamara, Keegan ; Niedźwiecki, Szymon ; Olko, Paweł ; Panek, Dominik ; Parzych, Szymon ; Perez del Rio, Elena ; Raczyński, Lech ; Sharma, Sushil ; Shivani ; Shopa, Roman Y ; Skóra, Tomasz ; Skurzok, Magdalena ; Stasica, Paulina ; Stępień, Ewa Ł ; Tayefi, Keyvan ; Tayefi, Faranak ; Weber, Damien C ; Winterhalter, Carla ; Wiślicki, Wojciech ; Moskal, Paweł ; Rucinski, Antoni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-f5203f77b975716334d05cc8d94fef77a635c29e6e969139c984f783a7b7eb103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>GATE</topic><topic>J-PET</topic><topic>medical imaging</topic><topic>Monte Carlo simulations</topic><topic>proton therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borys, Damian</creatorcontrib><creatorcontrib>Baran, Jakub</creatorcontrib><creatorcontrib>Brzeziński, Karol</creatorcontrib><creatorcontrib>Gajewski, Jan</creatorcontrib><creatorcontrib>Chug, Neha</creatorcontrib><creatorcontrib>Coussat, Aurelien</creatorcontrib><creatorcontrib>Czerwiński, Eryk</creatorcontrib><creatorcontrib>Dadgar, Meysam</creatorcontrib><creatorcontrib>Dulski, Kamil</creatorcontrib><creatorcontrib>Eliyan, Kavya V</creatorcontrib><creatorcontrib>Gajos, Aleksander</creatorcontrib><creatorcontrib>Kacprzak, Krzysztof</creatorcontrib><creatorcontrib>Kapłon, Łukasz</creatorcontrib><creatorcontrib>Klimaszewski, Konrad</creatorcontrib><creatorcontrib>Konieczka, Paweł</creatorcontrib><creatorcontrib>Kopeć, Renata</creatorcontrib><creatorcontrib>Korcyl, Grzegorz</creatorcontrib><creatorcontrib>Kozik, Tomasz</creatorcontrib><creatorcontrib>Krzemień, Wojciech</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Lomax, Antony J</creatorcontrib><creatorcontrib>McNamara, Keegan</creatorcontrib><creatorcontrib>Niedźwiecki, Szymon</creatorcontrib><creatorcontrib>Olko, Paweł</creatorcontrib><creatorcontrib>Panek, Dominik</creatorcontrib><creatorcontrib>Parzych, Szymon</creatorcontrib><creatorcontrib>Perez del Rio, Elena</creatorcontrib><creatorcontrib>Raczyński, Lech</creatorcontrib><creatorcontrib>Sharma, Sushil</creatorcontrib><creatorcontrib>Shivani</creatorcontrib><creatorcontrib>Shopa, Roman Y</creatorcontrib><creatorcontrib>Skóra, Tomasz</creatorcontrib><creatorcontrib>Skurzok, Magdalena</creatorcontrib><creatorcontrib>Stasica, Paulina</creatorcontrib><creatorcontrib>Stępień, Ewa Ł</creatorcontrib><creatorcontrib>Tayefi, Keyvan</creatorcontrib><creatorcontrib>Tayefi, Faranak</creatorcontrib><creatorcontrib>Weber, Damien C</creatorcontrib><creatorcontrib>Winterhalter, Carla</creatorcontrib><creatorcontrib>Wiślicki, Wojciech</creatorcontrib><creatorcontrib>Moskal, Paweł</creatorcontrib><creatorcontrib>Rucinski, Antoni</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borys, Damian</au><au>Baran, Jakub</au><au>Brzeziński, Karol</au><au>Gajewski, Jan</au><au>Chug, Neha</au><au>Coussat, Aurelien</au><au>Czerwiński, Eryk</au><au>Dadgar, Meysam</au><au>Dulski, Kamil</au><au>Eliyan, Kavya V</au><au>Gajos, Aleksander</au><au>Kacprzak, Krzysztof</au><au>Kapłon, Łukasz</au><au>Klimaszewski, Konrad</au><au>Konieczka, Paweł</au><au>Kopeć, Renata</au><au>Korcyl, Grzegorz</au><au>Kozik, Tomasz</au><au>Krzemień, Wojciech</au><au>Kumar, Deepak</au><au>Lomax, Antony J</au><au>McNamara, Keegan</au><au>Niedźwiecki, Szymon</au><au>Olko, Paweł</au><au>Panek, Dominik</au><au>Parzych, Szymon</au><au>Perez del Rio, Elena</au><au>Raczyński, Lech</au><au>Sharma, Sushil</au><au>Shivani</au><au>Shopa, Roman Y</au><au>Skóra, Tomasz</au><au>Skurzok, Magdalena</au><au>Stasica, Paulina</au><au>Stępień, Ewa Ł</au><au>Tayefi, Keyvan</au><au>Tayefi, Faranak</au><au>Weber, Damien C</au><au>Winterhalter, Carla</au><au>Wiślicki, Wojciech</au><au>Moskal, Paweł</au><au>Rucinski, Antoni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ProTheRaMon—a GATE simulation framework for proton therapy range monitoring using PET imaging</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2022-11-21</date><risdate>2022</risdate><volume>67</volume><issue>22</issue><spage>224002</spage><pages>224002-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland.
The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design.
ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized.
We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36137551</pmid><doi>10.1088/1361-6560/ac944c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4794-5154</orcidid><orcidid>https://orcid.org/0000-0001-5765-6308</orcidid><orcidid>https://orcid.org/0000-0002-7536-6459</orcidid><orcidid>https://orcid.org/0000-0002-9795-5158</orcidid><orcidid>https://orcid.org/0000-0001-5554-8178</orcidid><orcidid>https://orcid.org/0000-0002-5815-4606</orcidid><orcidid>https://orcid.org/0000-0001-8764-1588</orcidid><orcidid>https://orcid.org/0000-0001-6322-0615</orcidid><orcidid>https://orcid.org/0000-0002-7416-5145</orcidid><orcidid>https://orcid.org/0000-0002-1089-5050</orcidid><orcidid>https://orcid.org/0000-0002-4229-3548</orcidid><orcidid>https://orcid.org/0000-0003-1166-8236</orcidid><orcidid>https://orcid.org/0000-0003-3589-1715</orcidid><orcidid>https://orcid.org/0000-0002-0919-9859</orcidid><orcidid>https://orcid.org/0000-0002-4946-3837</orcidid><orcidid>https://orcid.org/0000-0003-0741-5922</orcidid><orcidid>https://orcid.org/0000-0001-6859-0180</orcidid><orcidid>https://orcid.org/0000-0003-0229-2601</orcidid><orcidid>https://orcid.org/0000-0001-7761-4084</orcidid><orcidid>https://orcid.org/0000-0002-5076-3175</orcidid><orcidid>https://orcid.org/0000-0002-7109-1136</orcidid><orcidid>https://orcid.org/0000-0002-4093-8162</orcidid><orcidid>https://orcid.org/0000-0002-9546-358X</orcidid><orcidid>https://orcid.org/0000-0002-2203-0425</orcidid><orcidid>https://orcid.org/0000-0003-1636-3706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2022-11, Vol.67 (22), p.224002 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6560_ac944c |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | GATE J-PET medical imaging Monte Carlo simulations proton therapy |
title | ProTheRaMon—a GATE simulation framework for proton therapy range monitoring using PET imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ProTheRaMon%E2%80%94a%20GATE%20simulation%20framework%20for%20proton%20therapy%20range%20monitoring%20using%20PET%20imaging&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Borys,%20Damian&rft.date=2022-11-21&rft.volume=67&rft.issue=22&rft.spage=224002&rft.pages=224002-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ac944c&rft_dat=%3Cpubmed_cross%3E36137551%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36137551&rfr_iscdi=true |