Material assignment for proton range prediction in Monte Carlo patient simulations using stopping-power datasets
Motivation and objective. For each institute, the selection and calibration of the most suitable approach to assign material properties for Monte Carlo (MC) patient simulation in proton therapy is a major challenge. Current conventional approaches based on computed tomography (CT) depend on CT acqui...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2020-09, Vol.65 (18), p.185004-185004, Article 185004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185004 |
---|---|
container_issue | 18 |
container_start_page | 185004 |
container_title | Physics in medicine & biology |
container_volume | 65 |
creator | Permatasari, Felicia Fibiani Eulitz, Jan Richter, Christian Wohlfahrt, Patrick Lühr, Armin |
description | Motivation and objective. For each institute, the selection and calibration of the most suitable approach to assign material properties for Monte Carlo (MC) patient simulation in proton therapy is a major challenge. Current conventional approaches based on computed tomography (CT) depend on CT acquisition and reconstruction settings. This study proposes a material assignment approach, referred to as MATA (MATerial Assignment), which is independent of CT scanner properties and, therefore, universally applicable by any institute. Materials and methods. The MATA approach assigns material properties to the physical quantity stopping-power ratio (SPR) using a set of 40 material compositions specified for human tissues and linearly determined mass density. The application of clinically available CT-number-to-SPR conversion avoids the need for any further calibration. The MATA approach was validated with homogeneous and heterogeneous SPR datasets by assessing the SPR accuracy after material assignment obtained either based on dose scoring or determination of water-equivalent thickness. Finally, MATA was applied on patient datasets to evaluate dose differences induced by different approaches for material assignment and SPR prediction. Results. The deviation between the SPR after material assignment and the input SPR was close to zero in homogeneous datasets and below 0.002 (0.2% relative to water) in heterogeneous datasets, which was within the systematic uncertainty in SPR estimation. The comparison of different material assignment approaches revealed relevant differences in dose distribution and SPR. The comparison between two SPR prediction approaches, a standard look-up table and direct SPR determination from dual-energy CT, resulted in patient-specific mean proton range shifts between 1.3 mm and 4.8 mm. Conclusion. MATA eliminates the need for institution-specific adaptations of the material assignment. It allows for using any SPR dataset and thus facilitates the implementation of more accurate SPR prediction approaches. Hence, MATA provides a universal solution for patient modeling in MC-based proton treatment planning. |
doi_str_mv | 10.1088/1361-6560/ab9702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ab9702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407584642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-172e05d75021b0e3bc75406966480422e3dfe90171890b5671bbc85a32c10ec33</originalsourceid><addsrcrecordid>eNqNkEtv1TAQRi0EopfCnhXyshKEjp9JlijiJbViA2vLcZwrV4ltbEcV_74Ot9wVQqw8Hp1vNHMQek3gPYGuuyZMkkYKCdd67FugT9Dh3HqKDgCMND0R4gK9yPkOgJCO8ufoglEugUpyQPFWF5ucXrDO2R39an3Bc0g4plCCx0n7o60fOzlTXG04j2-DLxYPOi0BR13cHslu3Ra9Exlv2fkjziXEWIsmhnub8KSLzrbkl-jZrJdsXz2-l-jHp4_fhy_NzbfPX4cPN41hsi8NaakFMbUCKBnBstG0goPspeQdcEotm2bbA2lJ18MoZEvG0XRCM2oIWMPYJbo6za2H_NxsLmp12dhl0d6GLSvKoRUdl5xWFE6oSSHnZGcVk1t1-qUIqN2z2qWqXao6ea6RN4_Tt3G10znwR2wFuhNwb8cwZ1MlGXvGAEC0wOs1tQIyuPJb3RA2X2r07f9HK_3uRLsQ1V3Ykq9W_7X41V_wuI6VUqQGOgHAVZxm9gDYZrUd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407584642</pqid></control><display><type>article</type><title>Material assignment for proton range prediction in Monte Carlo patient simulations using stopping-power datasets</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Permatasari, Felicia Fibiani ; Eulitz, Jan ; Richter, Christian ; Wohlfahrt, Patrick ; Lühr, Armin</creator><creatorcontrib>Permatasari, Felicia Fibiani ; Eulitz, Jan ; Richter, Christian ; Wohlfahrt, Patrick ; Lühr, Armin</creatorcontrib><description>Motivation and objective. For each institute, the selection and calibration of the most suitable approach to assign material properties for Monte Carlo (MC) patient simulation in proton therapy is a major challenge. Current conventional approaches based on computed tomography (CT) depend on CT acquisition and reconstruction settings. This study proposes a material assignment approach, referred to as MATA (MATerial Assignment), which is independent of CT scanner properties and, therefore, universally applicable by any institute. Materials and methods. The MATA approach assigns material properties to the physical quantity stopping-power ratio (SPR) using a set of 40 material compositions specified for human tissues and linearly determined mass density. The application of clinically available CT-number-to-SPR conversion avoids the need for any further calibration. The MATA approach was validated with homogeneous and heterogeneous SPR datasets by assessing the SPR accuracy after material assignment obtained either based on dose scoring or determination of water-equivalent thickness. Finally, MATA was applied on patient datasets to evaluate dose differences induced by different approaches for material assignment and SPR prediction. Results. The deviation between the SPR after material assignment and the input SPR was close to zero in homogeneous datasets and below 0.002 (0.2% relative to water) in heterogeneous datasets, which was within the systematic uncertainty in SPR estimation. The comparison of different material assignment approaches revealed relevant differences in dose distribution and SPR. The comparison between two SPR prediction approaches, a standard look-up table and direct SPR determination from dual-energy CT, resulted in patient-specific mean proton range shifts between 1.3 mm and 4.8 mm. Conclusion. MATA eliminates the need for institution-specific adaptations of the material assignment. It allows for using any SPR dataset and thus facilitates the implementation of more accurate SPR prediction approaches. Hence, MATA provides a universal solution for patient modeling in MC-based proton treatment planning.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab9702</identifier><identifier>PMID: 32460261</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>Calibration ; dual-energy CT ; Engineering ; Engineering, Biomedical ; Humans ; Life Sciences & Biomedicine ; Models, Biological ; Monte Carlo Method ; Monte Carlo simulation ; Patient-Specific Modeling ; proton radiotherapy ; Proton Therapy ; Radiology, Nuclear Medicine & Medical Imaging ; Radiotherapy Planning, Computer-Assisted - methods ; Science & Technology ; stopping-power ratio ; Technology ; Tomography, X-Ray Computed ; TOPAS ; Uncertainty</subject><ispartof>Physics in medicine & biology, 2020-09, Vol.65 (18), p.185004-185004, Article 185004</ispartof><rights>2020 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000570496600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c369t-172e05d75021b0e3bc75406966480422e3dfe90171890b5671bbc85a32c10ec33</citedby><cites>FETCH-LOGICAL-c369t-172e05d75021b0e3bc75406966480422e3dfe90171890b5671bbc85a32c10ec33</cites><orcidid>0000-0002-2121-0934 ; 0000-0002-9450-6859 ; 0000-0003-4261-4214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab9702/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,28253,53851,53898</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32460261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Permatasari, Felicia Fibiani</creatorcontrib><creatorcontrib>Eulitz, Jan</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Wohlfahrt, Patrick</creatorcontrib><creatorcontrib>Lühr, Armin</creatorcontrib><title>Material assignment for proton range prediction in Monte Carlo patient simulations using stopping-power datasets</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>PHYS MED BIOL</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Motivation and objective. For each institute, the selection and calibration of the most suitable approach to assign material properties for Monte Carlo (MC) patient simulation in proton therapy is a major challenge. Current conventional approaches based on computed tomography (CT) depend on CT acquisition and reconstruction settings. This study proposes a material assignment approach, referred to as MATA (MATerial Assignment), which is independent of CT scanner properties and, therefore, universally applicable by any institute. Materials and methods. The MATA approach assigns material properties to the physical quantity stopping-power ratio (SPR) using a set of 40 material compositions specified for human tissues and linearly determined mass density. The application of clinically available CT-number-to-SPR conversion avoids the need for any further calibration. The MATA approach was validated with homogeneous and heterogeneous SPR datasets by assessing the SPR accuracy after material assignment obtained either based on dose scoring or determination of water-equivalent thickness. Finally, MATA was applied on patient datasets to evaluate dose differences induced by different approaches for material assignment and SPR prediction. Results. The deviation between the SPR after material assignment and the input SPR was close to zero in homogeneous datasets and below 0.002 (0.2% relative to water) in heterogeneous datasets, which was within the systematic uncertainty in SPR estimation. The comparison of different material assignment approaches revealed relevant differences in dose distribution and SPR. The comparison between two SPR prediction approaches, a standard look-up table and direct SPR determination from dual-energy CT, resulted in patient-specific mean proton range shifts between 1.3 mm and 4.8 mm. Conclusion. MATA eliminates the need for institution-specific adaptations of the material assignment. It allows for using any SPR dataset and thus facilitates the implementation of more accurate SPR prediction approaches. Hence, MATA provides a universal solution for patient modeling in MC-based proton treatment planning.</description><subject>Calibration</subject><subject>dual-energy CT</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Patient-Specific Modeling</subject><subject>proton radiotherapy</subject><subject>Proton Therapy</subject><subject>Radiology, Nuclear Medicine & Medical Imaging</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Science & Technology</subject><subject>stopping-power ratio</subject><subject>Technology</subject><subject>Tomography, X-Ray Computed</subject><subject>TOPAS</subject><subject>Uncertainty</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEtv1TAQRi0EopfCnhXyshKEjp9JlijiJbViA2vLcZwrV4ltbEcV_74Ot9wVQqw8Hp1vNHMQek3gPYGuuyZMkkYKCdd67FugT9Dh3HqKDgCMND0R4gK9yPkOgJCO8ufoglEugUpyQPFWF5ucXrDO2R39an3Bc0g4plCCx0n7o60fOzlTXG04j2-DLxYPOi0BR13cHslu3Ra9Exlv2fkjziXEWIsmhnub8KSLzrbkl-jZrJdsXz2-l-jHp4_fhy_NzbfPX4cPN41hsi8NaakFMbUCKBnBstG0goPspeQdcEotm2bbA2lJ18MoZEvG0XRCM2oIWMPYJbo6za2H_NxsLmp12dhl0d6GLSvKoRUdl5xWFE6oSSHnZGcVk1t1-qUIqN2z2qWqXao6ea6RN4_Tt3G10znwR2wFuhNwb8cwZ1MlGXvGAEC0wOs1tQIyuPJb3RA2X2r07f9HK_3uRLsQ1V3Ykq9W_7X41V_wuI6VUqQGOgHAVZxm9gDYZrUd</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Permatasari, Felicia Fibiani</creator><creator>Eulitz, Jan</creator><creator>Richter, Christian</creator><creator>Wohlfahrt, Patrick</creator><creator>Lühr, Armin</creator><general>IOP Publishing</general><general>Iop Publishing Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2121-0934</orcidid><orcidid>https://orcid.org/0000-0002-9450-6859</orcidid><orcidid>https://orcid.org/0000-0003-4261-4214</orcidid></search><sort><creationdate>20200921</creationdate><title>Material assignment for proton range prediction in Monte Carlo patient simulations using stopping-power datasets</title><author>Permatasari, Felicia Fibiani ; Eulitz, Jan ; Richter, Christian ; Wohlfahrt, Patrick ; Lühr, Armin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-172e05d75021b0e3bc75406966480422e3dfe90171890b5671bbc85a32c10ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>dual-energy CT</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Patient-Specific Modeling</topic><topic>proton radiotherapy</topic><topic>Proton Therapy</topic><topic>Radiology, Nuclear Medicine & Medical Imaging</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Science & Technology</topic><topic>stopping-power ratio</topic><topic>Technology</topic><topic>Tomography, X-Ray Computed</topic><topic>TOPAS</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Permatasari, Felicia Fibiani</creatorcontrib><creatorcontrib>Eulitz, Jan</creatorcontrib><creatorcontrib>Richter, Christian</creatorcontrib><creatorcontrib>Wohlfahrt, Patrick</creatorcontrib><creatorcontrib>Lühr, Armin</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Permatasari, Felicia Fibiani</au><au>Eulitz, Jan</au><au>Richter, Christian</au><au>Wohlfahrt, Patrick</au><au>Lühr, Armin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material assignment for proton range prediction in Monte Carlo patient simulations using stopping-power datasets</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><stitle>PHYS MED BIOL</stitle><addtitle>Phys. Med. Biol</addtitle><date>2020-09-21</date><risdate>2020</risdate><volume>65</volume><issue>18</issue><spage>185004</spage><epage>185004</epage><pages>185004-185004</pages><artnum>185004</artnum><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Motivation and objective. For each institute, the selection and calibration of the most suitable approach to assign material properties for Monte Carlo (MC) patient simulation in proton therapy is a major challenge. Current conventional approaches based on computed tomography (CT) depend on CT acquisition and reconstruction settings. This study proposes a material assignment approach, referred to as MATA (MATerial Assignment), which is independent of CT scanner properties and, therefore, universally applicable by any institute. Materials and methods. The MATA approach assigns material properties to the physical quantity stopping-power ratio (SPR) using a set of 40 material compositions specified for human tissues and linearly determined mass density. The application of clinically available CT-number-to-SPR conversion avoids the need for any further calibration. The MATA approach was validated with homogeneous and heterogeneous SPR datasets by assessing the SPR accuracy after material assignment obtained either based on dose scoring or determination of water-equivalent thickness. Finally, MATA was applied on patient datasets to evaluate dose differences induced by different approaches for material assignment and SPR prediction. Results. The deviation between the SPR after material assignment and the input SPR was close to zero in homogeneous datasets and below 0.002 (0.2% relative to water) in heterogeneous datasets, which was within the systematic uncertainty in SPR estimation. The comparison of different material assignment approaches revealed relevant differences in dose distribution and SPR. The comparison between two SPR prediction approaches, a standard look-up table and direct SPR determination from dual-energy CT, resulted in patient-specific mean proton range shifts between 1.3 mm and 4.8 mm. Conclusion. MATA eliminates the need for institution-specific adaptations of the material assignment. It allows for using any SPR dataset and thus facilitates the implementation of more accurate SPR prediction approaches. Hence, MATA provides a universal solution for patient modeling in MC-based proton treatment planning.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><pmid>32460261</pmid><doi>10.1088/1361-6560/ab9702</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2121-0934</orcidid><orcidid>https://orcid.org/0000-0002-9450-6859</orcidid><orcidid>https://orcid.org/0000-0003-4261-4214</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2020-09, Vol.65 (18), p.185004-185004, Article 185004 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6560_ab9702 |
source | MEDLINE; IOP Publishing Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Calibration dual-energy CT Engineering Engineering, Biomedical Humans Life Sciences & Biomedicine Models, Biological Monte Carlo Method Monte Carlo simulation Patient-Specific Modeling proton radiotherapy Proton Therapy Radiology, Nuclear Medicine & Medical Imaging Radiotherapy Planning, Computer-Assisted - methods Science & Technology stopping-power ratio Technology Tomography, X-Ray Computed TOPAS Uncertainty |
title | Material assignment for proton range prediction in Monte Carlo patient simulations using stopping-power datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20assignment%20for%20proton%20range%20prediction%20in%20Monte%20Carlo%20patient%20simulations%20using%20stopping-power%20datasets&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Permatasari,%20Felicia%20Fibiani&rft.date=2020-09-21&rft.volume=65&rft.issue=18&rft.spage=185004&rft.epage=185004&rft.pages=185004-185004&rft.artnum=185004&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab9702&rft_dat=%3Cproquest_cross%3E2407584642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407584642&rft_id=info:pmid/32460261&rfr_iscdi=true |