Gradient regularized convolutional neural networks for low-dose CT image enhancement

The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2019-08, Vol.64 (16), p.165017-165017
Hauptverfasser: Gou, Shuiping, Liu, Wei, Jiao, Changzhe, Liu, Haofeng, Gu, Yu, Zhang, Xiaopeng, Lee, Jin, Jiao, Licheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165017
container_issue 16
container_start_page 165017
container_title Physics in medicine & biology
container_volume 64
creator Gou, Shuiping
Liu, Wei
Jiao, Changzhe
Liu, Haofeng
Gu, Yu
Zhang, Xiaopeng
Lee, Jin
Jiao, Licheng
description The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.
doi_str_mv 10.1088/1361-6560/ab325e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ab325e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336251900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4Mobk7vnqRHD9blNU26HmXoFAZe5jmkyevsbJuatA796-3s3EmEBw8e3-_H4yPkEugt0NlsCkxAKLigU5WxiOMRGR9Ox2RMKYMwBc5H5Mz7DaUAsyg-JSMGMWNJCmOyWjhlCqzbwOG6K5UrvtAE2tYftuzawtaqDGrs3M9qt9a9-SC3LijtNjTWYzBfBUWl1hhg_apqjVXfdU5OclV6vNjvCXl5uF_NH8Pl8-JpfrcMNRNpG2YcqEZMklgzGkVpzkUEJtZcsIxRpSjXIjUYZzrBNEZmNE-piCNjaJJkCtiEXA-9jbPvHfpWVoXXWJaqRtt5GTEmIg5p72FC6IBqZ713mMvG9X-7TwlU7lzKnTi5EycHl33kat_eZRWaQ-BXXg_cDEBhG7mxnetl-f_6rv_AmyqTIpYg-uEUEtmYnH0Dy-uLLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336251900</pqid></control><display><type>article</type><title>Gradient regularized convolutional neural networks for low-dose CT image enhancement</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gou, Shuiping ; Liu, Wei ; Jiao, Changzhe ; Liu, Haofeng ; Gu, Yu ; Zhang, Xiaopeng ; Lee, Jin ; Jiao, Licheng</creator><creatorcontrib>Gou, Shuiping ; Liu, Wei ; Jiao, Changzhe ; Liu, Haofeng ; Gu, Yu ; Zhang, Xiaopeng ; Lee, Jin ; Jiao, Licheng</creatorcontrib><description>The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab325e</identifier><identifier>PMID: 31433791</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>convolutional neural network ; deep learning ; gradient regularization ; Humans ; image enhancement ; low-dose CT ; Neural Networks, Computer ; Radiation Dosage ; Signal-To-Noise Ratio ; Tomography, X-Ray Computed - methods</subject><ispartof>Physics in medicine &amp; biology, 2019-08, Vol.64 (16), p.165017-165017</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</citedby><cites>FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab325e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31433791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Shuiping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jiao, Changzhe</creatorcontrib><creatorcontrib>Liu, Haofeng</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Lee, Jin</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Gradient regularized convolutional neural networks for low-dose CT image enhancement</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.</description><subject>convolutional neural network</subject><subject>deep learning</subject><subject>gradient regularization</subject><subject>Humans</subject><subject>image enhancement</subject><subject>low-dose CT</subject><subject>Neural Networks, Computer</subject><subject>Radiation Dosage</subject><subject>Signal-To-Noise Ratio</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFLwzAUh4Mobk7vnqRHD9blNU26HmXoFAZe5jmkyevsbJuatA796-3s3EmEBw8e3-_H4yPkEugt0NlsCkxAKLigU5WxiOMRGR9Ox2RMKYMwBc5H5Mz7DaUAsyg-JSMGMWNJCmOyWjhlCqzbwOG6K5UrvtAE2tYftuzawtaqDGrs3M9qt9a9-SC3LijtNjTWYzBfBUWl1hhg_apqjVXfdU5OclV6vNjvCXl5uF_NH8Pl8-JpfrcMNRNpG2YcqEZMklgzGkVpzkUEJtZcsIxRpSjXIjUYZzrBNEZmNE-piCNjaJJkCtiEXA-9jbPvHfpWVoXXWJaqRtt5GTEmIg5p72FC6IBqZ713mMvG9X-7TwlU7lzKnTi5EycHl33kat_eZRWaQ-BXXg_cDEBhG7mxnetl-f_6rv_AmyqTIpYg-uEUEtmYnH0Dy-uLLw</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Gou, Shuiping</creator><creator>Liu, Wei</creator><creator>Jiao, Changzhe</creator><creator>Liu, Haofeng</creator><creator>Gu, Yu</creator><creator>Zhang, Xiaopeng</creator><creator>Lee, Jin</creator><creator>Jiao, Licheng</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190821</creationdate><title>Gradient regularized convolutional neural networks for low-dose CT image enhancement</title><author>Gou, Shuiping ; Liu, Wei ; Jiao, Changzhe ; Liu, Haofeng ; Gu, Yu ; Zhang, Xiaopeng ; Lee, Jin ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>convolutional neural network</topic><topic>deep learning</topic><topic>gradient regularization</topic><topic>Humans</topic><topic>image enhancement</topic><topic>low-dose CT</topic><topic>Neural Networks, Computer</topic><topic>Radiation Dosage</topic><topic>Signal-To-Noise Ratio</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Shuiping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jiao, Changzhe</creatorcontrib><creatorcontrib>Liu, Haofeng</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Lee, Jin</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Shuiping</au><au>Liu, Wei</au><au>Jiao, Changzhe</au><au>Liu, Haofeng</au><au>Gu, Yu</au><au>Zhang, Xiaopeng</au><au>Lee, Jin</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient regularized convolutional neural networks for low-dose CT image enhancement</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>64</volume><issue>16</issue><spage>165017</spage><epage>165017</epage><pages>165017-165017</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31433791</pmid><doi>10.1088/1361-6560/ab325e</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2019-08, Vol.64 (16), p.165017-165017
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_ab325e
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects convolutional neural network
deep learning
gradient regularization
Humans
image enhancement
low-dose CT
Neural Networks, Computer
Radiation Dosage
Signal-To-Noise Ratio
Tomography, X-Ray Computed - methods
title Gradient regularized convolutional neural networks for low-dose CT image enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20regularized%20convolutional%20neural%20networks%20for%20low-dose%20CT%20image%20enhancement&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Gou,%20Shuiping&rft.date=2019-08-21&rft.volume=64&rft.issue=16&rft.spage=165017&rft.epage=165017&rft.pages=165017-165017&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab325e&rft_dat=%3Cproquest_cross%3E2336251900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336251900&rft_id=info:pmid/31433791&rfr_iscdi=true