Gradient regularized convolutional neural networks for low-dose CT image enhancement
The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2019-08, Vol.64 (16), p.165017-165017 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165017 |
---|---|
container_issue | 16 |
container_start_page | 165017 |
container_title | Physics in medicine & biology |
container_volume | 64 |
creator | Gou, Shuiping Liu, Wei Jiao, Changzhe Liu, Haofeng Gu, Yu Zhang, Xiaopeng Lee, Jin Jiao, Licheng |
description | The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively. |
doi_str_mv | 10.1088/1361-6560/ab325e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_ab325e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336251900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4Mobk7vnqRHD9blNU26HmXoFAZe5jmkyevsbJuatA796-3s3EmEBw8e3-_H4yPkEugt0NlsCkxAKLigU5WxiOMRGR9Ox2RMKYMwBc5H5Mz7DaUAsyg-JSMGMWNJCmOyWjhlCqzbwOG6K5UrvtAE2tYftuzawtaqDGrs3M9qt9a9-SC3LijtNjTWYzBfBUWl1hhg_apqjVXfdU5OclV6vNjvCXl5uF_NH8Pl8-JpfrcMNRNpG2YcqEZMklgzGkVpzkUEJtZcsIxRpSjXIjUYZzrBNEZmNE-piCNjaJJkCtiEXA-9jbPvHfpWVoXXWJaqRtt5GTEmIg5p72FC6IBqZ713mMvG9X-7TwlU7lzKnTi5EycHl33kat_eZRWaQ-BXXg_cDEBhG7mxnetl-f_6rv_AmyqTIpYg-uEUEtmYnH0Dy-uLLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336251900</pqid></control><display><type>article</type><title>Gradient regularized convolutional neural networks for low-dose CT image enhancement</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gou, Shuiping ; Liu, Wei ; Jiao, Changzhe ; Liu, Haofeng ; Gu, Yu ; Zhang, Xiaopeng ; Lee, Jin ; Jiao, Licheng</creator><creatorcontrib>Gou, Shuiping ; Liu, Wei ; Jiao, Changzhe ; Liu, Haofeng ; Gu, Yu ; Zhang, Xiaopeng ; Lee, Jin ; Jiao, Licheng</creatorcontrib><description>The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ab325e</identifier><identifier>PMID: 31433791</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>convolutional neural network ; deep learning ; gradient regularization ; Humans ; image enhancement ; low-dose CT ; Neural Networks, Computer ; Radiation Dosage ; Signal-To-Noise Ratio ; Tomography, X-Ray Computed - methods</subject><ispartof>Physics in medicine & biology, 2019-08, Vol.64 (16), p.165017-165017</ispartof><rights>2019 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</citedby><cites>FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ab325e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31433791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Shuiping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jiao, Changzhe</creatorcontrib><creatorcontrib>Liu, Haofeng</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Lee, Jin</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><title>Gradient regularized convolutional neural networks for low-dose CT image enhancement</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.</description><subject>convolutional neural network</subject><subject>deep learning</subject><subject>gradient regularization</subject><subject>Humans</subject><subject>image enhancement</subject><subject>low-dose CT</subject><subject>Neural Networks, Computer</subject><subject>Radiation Dosage</subject><subject>Signal-To-Noise Ratio</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFLwzAUh4Mobk7vnqRHD9blNU26HmXoFAZe5jmkyevsbJuatA796-3s3EmEBw8e3-_H4yPkEugt0NlsCkxAKLigU5WxiOMRGR9Ox2RMKYMwBc5H5Mz7DaUAsyg-JSMGMWNJCmOyWjhlCqzbwOG6K5UrvtAE2tYftuzawtaqDGrs3M9qt9a9-SC3LijtNjTWYzBfBUWl1hhg_apqjVXfdU5OclV6vNjvCXl5uF_NH8Pl8-JpfrcMNRNpG2YcqEZMklgzGkVpzkUEJtZcsIxRpSjXIjUYZzrBNEZmNE-piCNjaJJkCtiEXA-9jbPvHfpWVoXXWJaqRtt5GTEmIg5p72FC6IBqZ713mMvG9X-7TwlU7lzKnTi5EycHl33kat_eZRWaQ-BXXg_cDEBhG7mxnetl-f_6rv_AmyqTIpYg-uEUEtmYnH0Dy-uLLw</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Gou, Shuiping</creator><creator>Liu, Wei</creator><creator>Jiao, Changzhe</creator><creator>Liu, Haofeng</creator><creator>Gu, Yu</creator><creator>Zhang, Xiaopeng</creator><creator>Lee, Jin</creator><creator>Jiao, Licheng</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190821</creationdate><title>Gradient regularized convolutional neural networks for low-dose CT image enhancement</title><author>Gou, Shuiping ; Liu, Wei ; Jiao, Changzhe ; Liu, Haofeng ; Gu, Yu ; Zhang, Xiaopeng ; Lee, Jin ; Jiao, Licheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-b510cee774c30229f5621d4c563b30aa05c69de4bc7e94e3dc590642dd077ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>convolutional neural network</topic><topic>deep learning</topic><topic>gradient regularization</topic><topic>Humans</topic><topic>image enhancement</topic><topic>low-dose CT</topic><topic>Neural Networks, Computer</topic><topic>Radiation Dosage</topic><topic>Signal-To-Noise Ratio</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Shuiping</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Jiao, Changzhe</creatorcontrib><creatorcontrib>Liu, Haofeng</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Lee, Jin</creatorcontrib><creatorcontrib>Jiao, Licheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Shuiping</au><au>Liu, Wei</au><au>Jiao, Changzhe</au><au>Liu, Haofeng</au><au>Gu, Yu</au><au>Zhang, Xiaopeng</au><au>Lee, Jin</au><au>Jiao, Licheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient regularized convolutional neural networks for low-dose CT image enhancement</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>64</volume><issue>16</issue><spage>165017</spage><epage>165017</epage><pages>165017-165017</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The potential risks of x-ray to patients have transferred the public's attention from normal dose CT (NDCT) to low-dose CT (LDCT). However, simply lowering the radiation dose of the CT system will significantly degrade the quality of CT images such as noise and artifacts, which compromises the diagnostic performance. Hence, various methods have been proposed to solve this problem over the past decades. Although these methods have achieved impressive results, they also suffer from a drawback of smoothing image details after denoising, which makes it difficult for clinical diagnosis and treatment. To address this issue, this paper introduces a novel gradient regularization method for LDCT enhancement. Rather than common methods which only consider the pixel-wise gray value loss in the reconstruction procedure, we also take the image gradient loss into consideration to preserve image details. By combining the gradient regularization method and the convolutional neural network (CNN) framework, a gradient regularized convolutional neural network (GRCNN) is proposed to enhance LDCT images which has achieved promising performance in our experiments both visually and quantitatively.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31433791</pmid><doi>10.1088/1361-6560/ab325e</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2019-08, Vol.64 (16), p.165017-165017 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6560_ab325e |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | convolutional neural network deep learning gradient regularization Humans image enhancement low-dose CT Neural Networks, Computer Radiation Dosage Signal-To-Noise Ratio Tomography, X-Ray Computed - methods |
title | Gradient regularized convolutional neural networks for low-dose CT image enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20regularized%20convolutional%20neural%20networks%20for%20low-dose%20CT%20image%20enhancement&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Gou,%20Shuiping&rft.date=2019-08-21&rft.volume=64&rft.issue=16&rft.spage=165017&rft.epage=165017&rft.pages=165017-165017&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ab325e&rft_dat=%3Cproquest_cross%3E2336251900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336251900&rft_id=info:pmid/31433791&rfr_iscdi=true |