Requirements for a Compton camera for in vivo range verification of proton therapy

To ensure the optimal outcome of proton therapy, in vivo range verification is highly desired. Prompt γ-ray imaging (PGI) is a possible approach for in vivo range monitoring. For PGI, dedicated detection systems, e.g. Compton cameras, are currently under investigation. The presented paper deals with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2017-04, Vol.62 (7), p.2795-2811
Hauptverfasser: Rohling, H, Priegnitz, M, Schoene, S, Schumann, A, Enghardt, W, Hueso-González, F, Pausch, G, Fiedler, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2811
container_issue 7
container_start_page 2795
container_title Physics in medicine & biology
container_volume 62
creator Rohling, H
Priegnitz, M
Schoene, S
Schumann, A
Enghardt, W
Hueso-González, F
Pausch, G
Fiedler, F
description To ensure the optimal outcome of proton therapy, in vivo range verification is highly desired. Prompt γ-ray imaging (PGI) is a possible approach for in vivo range monitoring. For PGI, dedicated detection systems, e.g. Compton cameras, are currently under investigation. The presented paper deals with substantial requirements regarding hardware and software that a Compton camera used in clinical routine has to meet. By means of GEANT4 simulations, we investigate the load on the detectors and the percentage of background expected in a realistic irradiation and we simulate γ-ray detections subsequently used as input data for the reconstruction. By reconstructing events from simulated sources of well-defined geometry, we show that large-area detectors are favourable. We investigate reconstruction results in dependence of the number of events. Finally, an end-to-end test for a realistic patient scenario is presented: starting with a treatment plan, the γ-ray emissions are calculated, the detector response is modelled, and the image reconstruction is performed. By this, the complexity of the system is shown, and requirements and limitations regarding precision and costs are determined.
doi_str_mv 10.1088/1361-6560/aa6068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_aa6068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868394441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-965ab70dc9030664a221606ebff399cb7164e72a2eb4cb4e27a136b1fbabb0743</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7vniQXwYN1SZqmzVGGv2AgDD2HJEs0Y21q0g7235u6uZOePvh43u_jfQC4xOgOo6qa4pzhjBUMTaVkiFVHYHxYHYMxQjnOOC6KETiLcYUQxhWhp2BEKsyLgpExWCzMV--CqU3TRWh9gBLOfN12voFa1ibIn6Vr4MZtPAyy-TBwY4KzTsvOJcpb2AY_8N1nwtvtOTixch3NxX5OwPvjw9vsOZu_Pr3M7ueZzhnrMs4KqUq01BzliDEqCcGpg1HW5pxrVWJGTUkkMYpqRQ0pZeqmsFVSKVTSfAJudnfT-6_exE7ULmqzXsvG-D4KXLEq55RSnFC0Q3XwMQZjRRtcLcNWYCQGk2LQJgZtYmcyRa7213tVm-Uh8KsuAdc7wPlWrHwfmlRWtLUSjIhSkJIXol3axN3-wf379xsx24ko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868394441</pqid></control><display><type>article</type><title>Requirements for a Compton camera for in vivo range verification of proton therapy</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rohling, H ; Priegnitz, M ; Schoene, S ; Schumann, A ; Enghardt, W ; Hueso-González, F ; Pausch, G ; Fiedler, F</creator><creatorcontrib>Rohling, H ; Priegnitz, M ; Schoene, S ; Schumann, A ; Enghardt, W ; Hueso-González, F ; Pausch, G ; Fiedler, F</creatorcontrib><description>To ensure the optimal outcome of proton therapy, in vivo range verification is highly desired. Prompt γ-ray imaging (PGI) is a possible approach for in vivo range monitoring. For PGI, dedicated detection systems, e.g. Compton cameras, are currently under investigation. The presented paper deals with substantial requirements regarding hardware and software that a Compton camera used in clinical routine has to meet. By means of GEANT4 simulations, we investigate the load on the detectors and the percentage of background expected in a realistic irradiation and we simulate γ-ray detections subsequently used as input data for the reconstruction. By reconstructing events from simulated sources of well-defined geometry, we show that large-area detectors are favourable. We investigate reconstruction results in dependence of the number of events. Finally, an end-to-end test for a realistic patient scenario is presented: starting with a treatment plan, the γ-ray emissions are calculated, the detector response is modelled, and the image reconstruction is performed. By this, the complexity of the system is shown, and requirements and limitations regarding precision and costs are determined.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa6068</identifier><identifier>PMID: 28195562</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; Compton camera ; Computer Simulation ; end-to-end test ; Gamma Rays ; Geant4 ; Head and Neck Neoplasms - radiotherapy ; Humans ; Image Processing, Computer-Assisted - methods ; Monte Carlo Method ; Monte Carlo simulation ; prompt ; proton therapy ; Proton Therapy - methods ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Intensity-Modulated - methods ; range verification ; ray imaging ; Tomography, X-Ray Computed - methods</subject><ispartof>Physics in medicine &amp; biology, 2017-04, Vol.62 (7), p.2795-2811</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-965ab70dc9030664a221606ebff399cb7164e72a2eb4cb4e27a136b1fbabb0743</citedby><cites>FETCH-LOGICAL-c366t-965ab70dc9030664a221606ebff399cb7164e72a2eb4cb4e27a136b1fbabb0743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa6068/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28195562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohling, H</creatorcontrib><creatorcontrib>Priegnitz, M</creatorcontrib><creatorcontrib>Schoene, S</creatorcontrib><creatorcontrib>Schumann, A</creatorcontrib><creatorcontrib>Enghardt, W</creatorcontrib><creatorcontrib>Hueso-González, F</creatorcontrib><creatorcontrib>Pausch, G</creatorcontrib><creatorcontrib>Fiedler, F</creatorcontrib><title>Requirements for a Compton camera for in vivo range verification of proton therapy</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>To ensure the optimal outcome of proton therapy, in vivo range verification is highly desired. Prompt γ-ray imaging (PGI) is a possible approach for in vivo range monitoring. For PGI, dedicated detection systems, e.g. Compton cameras, are currently under investigation. The presented paper deals with substantial requirements regarding hardware and software that a Compton camera used in clinical routine has to meet. By means of GEANT4 simulations, we investigate the load on the detectors and the percentage of background expected in a realistic irradiation and we simulate γ-ray detections subsequently used as input data for the reconstruction. By reconstructing events from simulated sources of well-defined geometry, we show that large-area detectors are favourable. We investigate reconstruction results in dependence of the number of events. Finally, an end-to-end test for a realistic patient scenario is presented: starting with a treatment plan, the γ-ray emissions are calculated, the detector response is modelled, and the image reconstruction is performed. By this, the complexity of the system is shown, and requirements and limitations regarding precision and costs are determined.</description><subject>Algorithms</subject><subject>Compton camera</subject><subject>Computer Simulation</subject><subject>end-to-end test</subject><subject>Gamma Rays</subject><subject>Geant4</subject><subject>Head and Neck Neoplasms - radiotherapy</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>prompt</subject><subject>proton therapy</subject><subject>Proton Therapy - methods</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Intensity-Modulated - methods</subject><subject>range verification</subject><subject>ray imaging</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAYhoMobk7vniQXwYN1SZqmzVGGv2AgDD2HJEs0Y21q0g7235u6uZOePvh43u_jfQC4xOgOo6qa4pzhjBUMTaVkiFVHYHxYHYMxQjnOOC6KETiLcYUQxhWhp2BEKsyLgpExWCzMV--CqU3TRWh9gBLOfN12voFa1ibIn6Vr4MZtPAyy-TBwY4KzTsvOJcpb2AY_8N1nwtvtOTixch3NxX5OwPvjw9vsOZu_Pr3M7ueZzhnrMs4KqUq01BzliDEqCcGpg1HW5pxrVWJGTUkkMYpqRQ0pZeqmsFVSKVTSfAJudnfT-6_exE7ULmqzXsvG-D4KXLEq55RSnFC0Q3XwMQZjRRtcLcNWYCQGk2LQJgZtYmcyRa7213tVm-Uh8KsuAdc7wPlWrHwfmlRWtLUSjIhSkJIXol3axN3-wf379xsx24ko</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Rohling, H</creator><creator>Priegnitz, M</creator><creator>Schoene, S</creator><creator>Schumann, A</creator><creator>Enghardt, W</creator><creator>Hueso-González, F</creator><creator>Pausch, G</creator><creator>Fiedler, F</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170407</creationdate><title>Requirements for a Compton camera for in vivo range verification of proton therapy</title><author>Rohling, H ; Priegnitz, M ; Schoene, S ; Schumann, A ; Enghardt, W ; Hueso-González, F ; Pausch, G ; Fiedler, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-965ab70dc9030664a221606ebff399cb7164e72a2eb4cb4e27a136b1fbabb0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Compton camera</topic><topic>Computer Simulation</topic><topic>end-to-end test</topic><topic>Gamma Rays</topic><topic>Geant4</topic><topic>Head and Neck Neoplasms - radiotherapy</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>prompt</topic><topic>proton therapy</topic><topic>Proton Therapy - methods</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Intensity-Modulated - methods</topic><topic>range verification</topic><topic>ray imaging</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohling, H</creatorcontrib><creatorcontrib>Priegnitz, M</creatorcontrib><creatorcontrib>Schoene, S</creatorcontrib><creatorcontrib>Schumann, A</creatorcontrib><creatorcontrib>Enghardt, W</creatorcontrib><creatorcontrib>Hueso-González, F</creatorcontrib><creatorcontrib>Pausch, G</creatorcontrib><creatorcontrib>Fiedler, F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohling, H</au><au>Priegnitz, M</au><au>Schoene, S</au><au>Schumann, A</au><au>Enghardt, W</au><au>Hueso-González, F</au><au>Pausch, G</au><au>Fiedler, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for a Compton camera for in vivo range verification of proton therapy</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>62</volume><issue>7</issue><spage>2795</spage><epage>2811</epage><pages>2795-2811</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>To ensure the optimal outcome of proton therapy, in vivo range verification is highly desired. Prompt γ-ray imaging (PGI) is a possible approach for in vivo range monitoring. For PGI, dedicated detection systems, e.g. Compton cameras, are currently under investigation. The presented paper deals with substantial requirements regarding hardware and software that a Compton camera used in clinical routine has to meet. By means of GEANT4 simulations, we investigate the load on the detectors and the percentage of background expected in a realistic irradiation and we simulate γ-ray detections subsequently used as input data for the reconstruction. By reconstructing events from simulated sources of well-defined geometry, we show that large-area detectors are favourable. We investigate reconstruction results in dependence of the number of events. Finally, an end-to-end test for a realistic patient scenario is presented: starting with a treatment plan, the γ-ray emissions are calculated, the detector response is modelled, and the image reconstruction is performed. By this, the complexity of the system is shown, and requirements and limitations regarding precision and costs are determined.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28195562</pmid><doi>10.1088/1361-6560/aa6068</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2017-04, Vol.62 (7), p.2795-2811
issn 0031-9155
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_aa6068
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
Compton camera
Computer Simulation
end-to-end test
Gamma Rays
Geant4
Head and Neck Neoplasms - radiotherapy
Humans
Image Processing, Computer-Assisted - methods
Monte Carlo Method
Monte Carlo simulation
prompt
proton therapy
Proton Therapy - methods
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Intensity-Modulated - methods
range verification
ray imaging
Tomography, X-Ray Computed - methods
title Requirements for a Compton camera for in vivo range verification of proton therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20a%20Compton%20camera%20for%20in%20vivo%20range%20verification%20of%20proton%20therapy&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Rohling,%20H&rft.date=2017-04-07&rft.volume=62&rft.issue=7&rft.spage=2795&rft.epage=2811&rft.pages=2795-2811&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa6068&rft_dat=%3Cproquest_cross%3E1868394441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868394441&rft_id=info:pmid/28195562&rfr_iscdi=true