Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR

In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imagin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2017-04, Vol.62 (7), p.2834-2858
Hauptverfasser: Mérida, Inés, Reilhac, Anthonin, Redouté, Jérôme, Heckemann, Rolf A, Costes, Nicolas, Hammers, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2858
container_issue 7
container_start_page 2834
container_title Physics in medicine & biology
container_volume 62
creator Mérida, Inés
Reilhac, Anthonin
Redouté, Jérôme
Heckemann, Rolf A
Costes, Nicolas
Hammers, Alexander
description In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.
doi_str_mv 10.1088/1361-6560/aa5f6c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_aa5f6c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1866688890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-5cbdbc71eb7886bd54366ffbf2f73f140054ac26e43e75a5a06d2570e65674b53</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9lrdu5JsBBcdm2QmH3cppVahRZG6DieZpEyZmaT5QPrvzXXqXekqL4fnvCF5EHpLyUdKlDqnvaCd4IKcA3Av7DO0O46eox0hPe32lPMT9Crne0IoVWx4iU6YoooOcr9D602dy9RBmSFjKMWtFcoUVmxDSs7-ibnGGFLJ2Nd5xg8V1jL5yW5c8DiXFi2GdcTj4wpLyybBtOLvl7d4hAJ4y93Nj9fohYc5uzdP5yn6-fny9uJLd_3t6uvFp-vOcspKx60ZjZXUGamUMCMfeiG8N5552Xs6EMIHsEy4oXeSAwciRsYlce3hcjC8P0Xd1pt_uViNjmlaID3qAJO-q1G30V3V2WnGmeQH_sPGxxQeqstFL1O2bp5hdaFmTZUQQim1Jw0lG2pTyDk5fyynRB-s6IMCfVCgNytt5d1TezWLG48LfzU04P0GTCHq-1DT2j5Hx8VowbRsXD_oOPrGnf2D---9vwEP8KSa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866688890</pqid></control><display><type>article</type><title>Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mérida, Inés ; Reilhac, Anthonin ; Redouté, Jérôme ; Heckemann, Rolf A ; Costes, Nicolas ; Hammers, Alexander</creator><creatorcontrib>Mérida, Inés ; Reilhac, Anthonin ; Redouté, Jérôme ; Heckemann, Rolf A ; Costes, Nicolas ; Hammers, Alexander ; Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap ; Sahlgrenska akademin ; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience ; Göteborgs universitet ; Gothenburg University ; Sahlgrenska Academy</creatorcontrib><description>In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa5f6c</identifier><identifier>PMID: 28181479</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adolescent ; Adult ; Algorithms ; attenuation map ; Brain - diagnostic imaging ; Brain - physiology ; Brain Mapping - methods ; Female ; Fluorodeoxyglucose F18 - metabolism ; Humans ; Image Processing, Computer-Assisted - methods ; kinetic modelling ; Kinetics ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Multimodal Imaging ; Neuroimaging - methods ; Neurosciences ; Neurovetenskaper ; positron emission tomography ; Positron-Emission Tomography - methods ; pseudo-CT ; Radiologi och bildbehandling ; Radiology, Nuclear Medicine and Medical Imaging ; Tomography, X-Ray Computed - methods ; Young Adult</subject><ispartof>Physics in medicine &amp; biology, 2017-04, Vol.62 (7), p.2834-2858</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-5cbdbc71eb7886bd54366ffbf2f73f140054ac26e43e75a5a06d2570e65674b53</citedby><cites>FETCH-LOGICAL-c512t-5cbdbc71eb7886bd54366ffbf2f73f140054ac26e43e75a5a06d2570e65674b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa5f6c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28181479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/252755$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Mérida, Inés</creatorcontrib><creatorcontrib>Reilhac, Anthonin</creatorcontrib><creatorcontrib>Redouté, Jérôme</creatorcontrib><creatorcontrib>Heckemann, Rolf A</creatorcontrib><creatorcontrib>Costes, Nicolas</creatorcontrib><creatorcontrib>Hammers, Alexander</creatorcontrib><creatorcontrib>Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap</creatorcontrib><creatorcontrib>Sahlgrenska akademin</creatorcontrib><creatorcontrib>Institute of Neuroscience and Physiology, Department of Clinical Neuroscience</creatorcontrib><creatorcontrib>Göteborgs universitet</creatorcontrib><creatorcontrib>Gothenburg University</creatorcontrib><creatorcontrib>Sahlgrenska Academy</creatorcontrib><title>Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>attenuation map</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18 - metabolism</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>kinetic modelling</subject><subject>Kinetics</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multimodal Imaging</subject><subject>Neuroimaging - methods</subject><subject>Neurosciences</subject><subject>Neurovetenskaper</subject><subject>positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>pseudo-CT</subject><subject>Radiologi och bildbehandling</subject><subject>Radiology, Nuclear Medicine and Medical Imaging</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Young Adult</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoMo9lrdu5JsBBcdm2QmH3cppVahRZG6DieZpEyZmaT5QPrvzXXqXekqL4fnvCF5EHpLyUdKlDqnvaCd4IKcA3Av7DO0O46eox0hPe32lPMT9Crne0IoVWx4iU6YoooOcr9D602dy9RBmSFjKMWtFcoUVmxDSs7-ibnGGFLJ2Nd5xg8V1jL5yW5c8DiXFi2GdcTj4wpLyybBtOLvl7d4hAJ4y93Nj9fohYc5uzdP5yn6-fny9uJLd_3t6uvFp-vOcspKx60ZjZXUGamUMCMfeiG8N5552Xs6EMIHsEy4oXeSAwciRsYlce3hcjC8P0Xd1pt_uViNjmlaID3qAJO-q1G30V3V2WnGmeQH_sPGxxQeqstFL1O2bp5hdaFmTZUQQim1Jw0lG2pTyDk5fyynRB-s6IMCfVCgNytt5d1TezWLG48LfzU04P0GTCHq-1DT2j5Hx8VowbRsXD_oOPrGnf2D---9vwEP8KSa</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Mérida, Inés</creator><creator>Reilhac, Anthonin</creator><creator>Redouté, Jérôme</creator><creator>Heckemann, Rolf A</creator><creator>Costes, Nicolas</creator><creator>Hammers, Alexander</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope></search><sort><creationdate>20170407</creationdate><title>Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR</title><author>Mérida, Inés ; Reilhac, Anthonin ; Redouté, Jérôme ; Heckemann, Rolf A ; Costes, Nicolas ; Hammers, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-5cbdbc71eb7886bd54366ffbf2f73f140054ac26e43e75a5a06d2570e65674b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>attenuation map</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18 - metabolism</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>kinetic modelling</topic><topic>Kinetics</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multimodal Imaging</topic><topic>Neuroimaging - methods</topic><topic>Neurosciences</topic><topic>Neurovetenskaper</topic><topic>positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>pseudo-CT</topic><topic>Radiologi och bildbehandling</topic><topic>Radiology, Nuclear Medicine and Medical Imaging</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mérida, Inés</creatorcontrib><creatorcontrib>Reilhac, Anthonin</creatorcontrib><creatorcontrib>Redouté, Jérôme</creatorcontrib><creatorcontrib>Heckemann, Rolf A</creatorcontrib><creatorcontrib>Costes, Nicolas</creatorcontrib><creatorcontrib>Hammers, Alexander</creatorcontrib><creatorcontrib>Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap</creatorcontrib><creatorcontrib>Sahlgrenska akademin</creatorcontrib><creatorcontrib>Institute of Neuroscience and Physiology, Department of Clinical Neuroscience</creatorcontrib><creatorcontrib>Göteborgs universitet</creatorcontrib><creatorcontrib>Gothenburg University</creatorcontrib><creatorcontrib>Sahlgrenska Academy</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mérida, Inés</au><au>Reilhac, Anthonin</au><au>Redouté, Jérôme</au><au>Heckemann, Rolf A</au><au>Costes, Nicolas</au><au>Hammers, Alexander</au><aucorp>Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap</aucorp><aucorp>Sahlgrenska akademin</aucorp><aucorp>Institute of Neuroscience and Physiology, Department of Clinical Neuroscience</aucorp><aucorp>Göteborgs universitet</aucorp><aucorp>Gothenburg University</aucorp><aucorp>Sahlgrenska Academy</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>62</volume><issue>7</issue><spage>2834</spage><epage>2858</epage><pages>2834-2858</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28181479</pmid><doi>10.1088/1361-6560/aa5f6c</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2017-04, Vol.62 (7), p.2834-2858
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_aa5f6c
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Adolescent
Adult
Algorithms
attenuation map
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Female
Fluorodeoxyglucose F18 - metabolism
Humans
Image Processing, Computer-Assisted - methods
kinetic modelling
Kinetics
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
Multimodal Imaging
Neuroimaging - methods
Neurosciences
Neurovetenskaper
positron emission tomography
Positron-Emission Tomography - methods
pseudo-CT
Radiologi och bildbehandling
Radiology, Nuclear Medicine and Medical Imaging
Tomography, X-Ray Computed - methods
Young Adult
title Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-atlas%20attenuation%20correction%20supports%20full%20quantification%20of%20static%20and%20dynamic%20brain%20PET%20data%20in%20PET-MR&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=M%C3%A9rida,%20In%C3%A9s&rft.aucorp=Institutionen%20f%C3%B6r%20neurovetenskap%20och%20fysiologi,%20sektionen%20f%C3%B6r%20klinisk%20neurovetenskap&rft.date=2017-04-07&rft.volume=62&rft.issue=7&rft.spage=2834&rft.epage=2858&rft.pages=2834-2858&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa5f6c&rft_dat=%3Cproquest_cross%3E1866688890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866688890&rft_id=info:pmid/28181479&rfr_iscdi=true