A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators
Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2017-03, Vol.62 (5), p.1831-1847 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1847 |
---|---|
container_issue | 5 |
container_start_page | 1831 |
container_title | Physics in medicine & biology |
container_volume | 62 |
creator | Paulides, M M Mestrom, R M C Salim, G Adela, B B Numan, W C M Drizdal, T Yeo, D T B Smolders, A B |
description | Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11 |
doi_str_mv | 10.1088/1361-6560/aa56b3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_aa56b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855787627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</originalsourceid><addsrcrecordid>eNp1kEFP4zAQha0VaFvYve8J-YK0BwK2EzvOsUK7gFSJCxw4WZNkUlw1drATVv33uJTtCU7WWN97M-8R8ouzS860vuK54pmSil0BSFXn38j88HVE5ozlPKu4lDNyEuOaMc61KL6TmdBMClaIOXld0CFYN2JLn2Bls8cWKKTROaCdDxSGYWMbGK131Draw8rhaBsaMHoHrkE6PmPofY9j2NLVZNvk1Nsm-H_wivR5O2B4JywcvHyIP8hxB5uIPz_eU_L498_D9W22vL-5u14ss6ZgesxAcEBeqApLlc6tyroSZds1XdVqoVKyLiWSWiPXeQeslSXTqgDAoi40y1l-Sn7vfYfgXyaMo-ltbHCzAYd-iiapZalLJcqEsj2abo8xYGdSMT2EreHM7No2u2rNrlqzbztJzj7cp7rH9iD4X28CzveA9YNZ-ym4FNYMfW2UMDJtz7kZ2i5xF59wX-59A4stltE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855787627</pqid></control><display><type>article</type><title>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Paulides, M M ; Mestrom, R M C ; Salim, G ; Adela, B B ; Numan, W C M ; Drizdal, T ; Yeo, D T B ; Smolders, A B</creator><creatorcontrib>Paulides, M M ; Mestrom, R M C ; Salim, G ; Adela, B B ; Numan, W C M ; Drizdal, T ; Yeo, D T B ; Smolders, A B</creatorcontrib><description>Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11 < −15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S21 < −23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE = 0.51 °C and R2 = 0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa56b3</identifier><identifier>PMID: 28052042</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>hyperthermia ; Hyperthermia, Induced - instrumentation ; Hyperthermia, Induced - methods ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; microwave ; Microwaves - therapeutic use ; MR thermometry ; MRI ; Neoplasms - therapy ; Phantoms, Imaging ; phased-array ; printed antenna ; radiofrequency ; Thermometry - instrumentation ; Thermometry - methods</subject><ispartof>Physics in medicine & biology, 2017-03, Vol.62 (5), p.1831-1847</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</citedby><cites>FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa56b3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28052042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulides, M M</creatorcontrib><creatorcontrib>Mestrom, R M C</creatorcontrib><creatorcontrib>Salim, G</creatorcontrib><creatorcontrib>Adela, B B</creatorcontrib><creatorcontrib>Numan, W C M</creatorcontrib><creatorcontrib>Drizdal, T</creatorcontrib><creatorcontrib>Yeo, D T B</creatorcontrib><creatorcontrib>Smolders, A B</creatorcontrib><title>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11 < −15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S21 < −23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE = 0.51 °C and R2 = 0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.</description><subject>hyperthermia</subject><subject>Hyperthermia, Induced - instrumentation</subject><subject>Hyperthermia, Induced - methods</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>microwave</subject><subject>Microwaves - therapeutic use</subject><subject>MR thermometry</subject><subject>MRI</subject><subject>Neoplasms - therapy</subject><subject>Phantoms, Imaging</subject><subject>phased-array</subject><subject>printed antenna</subject><subject>radiofrequency</subject><subject>Thermometry - instrumentation</subject><subject>Thermometry - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP4zAQha0VaFvYve8J-YK0BwK2EzvOsUK7gFSJCxw4WZNkUlw1drATVv33uJTtCU7WWN97M-8R8ouzS860vuK54pmSil0BSFXn38j88HVE5ozlPKu4lDNyEuOaMc61KL6TmdBMClaIOXld0CFYN2JLn2Bls8cWKKTROaCdDxSGYWMbGK131Draw8rhaBsaMHoHrkE6PmPofY9j2NLVZNvk1Nsm-H_wivR5O2B4JywcvHyIP8hxB5uIPz_eU_L498_D9W22vL-5u14ss6ZgesxAcEBeqApLlc6tyroSZds1XdVqoVKyLiWSWiPXeQeslSXTqgDAoi40y1l-Sn7vfYfgXyaMo-ltbHCzAYd-iiapZalLJcqEsj2abo8xYGdSMT2EreHM7No2u2rNrlqzbztJzj7cp7rH9iD4X28CzveA9YNZ-ym4FNYMfW2UMDJtz7kZ2i5xF59wX-59A4stltE</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Paulides, M M</creator><creator>Mestrom, R M C</creator><creator>Salim, G</creator><creator>Adela, B B</creator><creator>Numan, W C M</creator><creator>Drizdal, T</creator><creator>Yeo, D T B</creator><creator>Smolders, A B</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170307</creationdate><title>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</title><author>Paulides, M M ; Mestrom, R M C ; Salim, G ; Adela, B B ; Numan, W C M ; Drizdal, T ; Yeo, D T B ; Smolders, A B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>hyperthermia</topic><topic>Hyperthermia, Induced - instrumentation</topic><topic>Hyperthermia, Induced - methods</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>microwave</topic><topic>Microwaves - therapeutic use</topic><topic>MR thermometry</topic><topic>MRI</topic><topic>Neoplasms - therapy</topic><topic>Phantoms, Imaging</topic><topic>phased-array</topic><topic>printed antenna</topic><topic>radiofrequency</topic><topic>Thermometry - instrumentation</topic><topic>Thermometry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulides, M M</creatorcontrib><creatorcontrib>Mestrom, R M C</creatorcontrib><creatorcontrib>Salim, G</creatorcontrib><creatorcontrib>Adela, B B</creatorcontrib><creatorcontrib>Numan, W C M</creatorcontrib><creatorcontrib>Drizdal, T</creatorcontrib><creatorcontrib>Yeo, D T B</creatorcontrib><creatorcontrib>Smolders, A B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulides, M M</au><au>Mestrom, R M C</au><au>Salim, G</au><au>Adela, B B</au><au>Numan, W C M</au><au>Drizdal, T</au><au>Yeo, D T B</au><au>Smolders, A B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2017-03-07</date><risdate>2017</risdate><volume>62</volume><issue>5</issue><spage>1831</spage><epage>1847</epage><pages>1831-1847</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11 < −15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S21 < −23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE = 0.51 °C and R2 = 0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28052042</pmid><doi>10.1088/1361-6560/aa56b3</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2017-03, Vol.62 (5), p.1831-1847 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6560_aa56b3 |
source | Institute of Physics Journals; MEDLINE |
subjects | hyperthermia Hyperthermia, Induced - instrumentation Hyperthermia, Induced - methods Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods microwave Microwaves - therapeutic use MR thermometry MRI Neoplasms - therapy Phantoms, Imaging phased-array printed antenna radiofrequency Thermometry - instrumentation Thermometry - methods |
title | A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20printed%20Yagi-Uda%20antenna%20for%20application%20in%20magnetic%20resonance%20thermometry%20guided%20microwave%20hyperthermia%20applicators&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Paulides,%20M%20M&rft.date=2017-03-07&rft.volume=62&rft.issue=5&rft.spage=1831&rft.epage=1847&rft.pages=1831-1847&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa56b3&rft_dat=%3Cproquest_cross%3E1855787627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855787627&rft_id=info:pmid/28052042&rfr_iscdi=true |