A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators

Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2017-03, Vol.62 (5), p.1831-1847
Hauptverfasser: Paulides, M M, Mestrom, R M C, Salim, G, Adela, B B, Numan, W C M, Drizdal, T, Yeo, D T B, Smolders, A B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1847
container_issue 5
container_start_page 1831
container_title Physics in medicine & biology
container_volume 62
creator Paulides, M M
Mestrom, R M C
Salim, G
Adela, B B
Numan, W C M
Drizdal, T
Yeo, D T B
Smolders, A B
description Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11  
doi_str_mv 10.1088/1361-6560/aa56b3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6560_aa56b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855787627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</originalsourceid><addsrcrecordid>eNp1kEFP4zAQha0VaFvYve8J-YK0BwK2EzvOsUK7gFSJCxw4WZNkUlw1drATVv33uJTtCU7WWN97M-8R8ouzS860vuK54pmSil0BSFXn38j88HVE5ozlPKu4lDNyEuOaMc61KL6TmdBMClaIOXld0CFYN2JLn2Bls8cWKKTROaCdDxSGYWMbGK131Draw8rhaBsaMHoHrkE6PmPofY9j2NLVZNvk1Nsm-H_wivR5O2B4JywcvHyIP8hxB5uIPz_eU_L498_D9W22vL-5u14ss6ZgesxAcEBeqApLlc6tyroSZds1XdVqoVKyLiWSWiPXeQeslSXTqgDAoi40y1l-Sn7vfYfgXyaMo-ltbHCzAYd-iiapZalLJcqEsj2abo8xYGdSMT2EreHM7No2u2rNrlqzbztJzj7cp7rH9iD4X28CzveA9YNZ-ym4FNYMfW2UMDJtz7kZ2i5xF59wX-59A4stltE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855787627</pqid></control><display><type>article</type><title>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Paulides, M M ; Mestrom, R M C ; Salim, G ; Adela, B B ; Numan, W C M ; Drizdal, T ; Yeo, D T B ; Smolders, A B</creator><creatorcontrib>Paulides, M M ; Mestrom, R M C ; Salim, G ; Adela, B B ; Numan, W C M ; Drizdal, T ; Yeo, D T B ; Smolders, A B</creatorcontrib><description>Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11  &lt;  −15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S21  &lt;  −23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE  =  0.51 °C and R2  =  0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa56b3</identifier><identifier>PMID: 28052042</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>hyperthermia ; Hyperthermia, Induced - instrumentation ; Hyperthermia, Induced - methods ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; microwave ; Microwaves - therapeutic use ; MR thermometry ; MRI ; Neoplasms - therapy ; Phantoms, Imaging ; phased-array ; printed antenna ; radiofrequency ; Thermometry - instrumentation ; Thermometry - methods</subject><ispartof>Physics in medicine &amp; biology, 2017-03, Vol.62 (5), p.1831-1847</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</citedby><cites>FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aa56b3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28052042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulides, M M</creatorcontrib><creatorcontrib>Mestrom, R M C</creatorcontrib><creatorcontrib>Salim, G</creatorcontrib><creatorcontrib>Adela, B B</creatorcontrib><creatorcontrib>Numan, W C M</creatorcontrib><creatorcontrib>Drizdal, T</creatorcontrib><creatorcontrib>Yeo, D T B</creatorcontrib><creatorcontrib>Smolders, A B</creatorcontrib><title>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11  &lt;  −15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S21  &lt;  −23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE  =  0.51 °C and R2  =  0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.</description><subject>hyperthermia</subject><subject>Hyperthermia, Induced - instrumentation</subject><subject>Hyperthermia, Induced - methods</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>microwave</subject><subject>Microwaves - therapeutic use</subject><subject>MR thermometry</subject><subject>MRI</subject><subject>Neoplasms - therapy</subject><subject>Phantoms, Imaging</subject><subject>phased-array</subject><subject>printed antenna</subject><subject>radiofrequency</subject><subject>Thermometry - instrumentation</subject><subject>Thermometry - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP4zAQha0VaFvYve8J-YK0BwK2EzvOsUK7gFSJCxw4WZNkUlw1drATVv33uJTtCU7WWN97M-8R8ouzS860vuK54pmSil0BSFXn38j88HVE5ozlPKu4lDNyEuOaMc61KL6TmdBMClaIOXld0CFYN2JLn2Bls8cWKKTROaCdDxSGYWMbGK131Draw8rhaBsaMHoHrkE6PmPofY9j2NLVZNvk1Nsm-H_wivR5O2B4JywcvHyIP8hxB5uIPz_eU_L498_D9W22vL-5u14ss6ZgesxAcEBeqApLlc6tyroSZds1XdVqoVKyLiWSWiPXeQeslSXTqgDAoi40y1l-Sn7vfYfgXyaMo-ltbHCzAYd-iiapZalLJcqEsj2abo8xYGdSMT2EreHM7No2u2rNrlqzbztJzj7cp7rH9iD4X28CzveA9YNZ-ym4FNYMfW2UMDJtz7kZ2i5xF59wX-59A4stltE</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Paulides, M M</creator><creator>Mestrom, R M C</creator><creator>Salim, G</creator><creator>Adela, B B</creator><creator>Numan, W C M</creator><creator>Drizdal, T</creator><creator>Yeo, D T B</creator><creator>Smolders, A B</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170307</creationdate><title>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</title><author>Paulides, M M ; Mestrom, R M C ; Salim, G ; Adela, B B ; Numan, W C M ; Drizdal, T ; Yeo, D T B ; Smolders, A B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a21ae1469e7604297b927dfcf9d826915f118588e183fa0d570864aae4b480303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>hyperthermia</topic><topic>Hyperthermia, Induced - instrumentation</topic><topic>Hyperthermia, Induced - methods</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>microwave</topic><topic>Microwaves - therapeutic use</topic><topic>MR thermometry</topic><topic>MRI</topic><topic>Neoplasms - therapy</topic><topic>Phantoms, Imaging</topic><topic>phased-array</topic><topic>printed antenna</topic><topic>radiofrequency</topic><topic>Thermometry - instrumentation</topic><topic>Thermometry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulides, M M</creatorcontrib><creatorcontrib>Mestrom, R M C</creatorcontrib><creatorcontrib>Salim, G</creatorcontrib><creatorcontrib>Adela, B B</creatorcontrib><creatorcontrib>Numan, W C M</creatorcontrib><creatorcontrib>Drizdal, T</creatorcontrib><creatorcontrib>Yeo, D T B</creatorcontrib><creatorcontrib>Smolders, A B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulides, M M</au><au>Mestrom, R M C</au><au>Salim, G</au><au>Adela, B B</au><au>Numan, W C M</au><au>Drizdal, T</au><au>Yeo, D T B</au><au>Smolders, A B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2017-03-07</date><risdate>2017</risdate><volume>62</volume><issue>5</issue><spage>1831</spage><epage>1847</epage><pages>1831-1847</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Biological studies and clinical trials show that addition of hyperthermia stimulates conventional cancer treatment modalities and significantly improves treatment outcome. This supra-additive stimulation can be optimized by adaptive hyperthermia to counteract strong and dynamic thermoregulation. The only clinically proven method for the 3D non-invasive temperature monitoring required is by magnetic resonance (MR) temperature imaging, but the currently available set of MR compatible hyperthermia applicators lack the degree of heat control required. In this work, we present the design and validation of a high-frequency (433 MHz ISM band) printed circuit board antenna with a very low MR-footprint. This design is ideally suited for use in a range of hyperthermia applicator configurations. Experiments emulating the clinical situation show excellent matching properties of the antenna over a 7.2% bandwidth (S11  &lt;  −15 dB). Its strongly directional radiation properties minimize inter-element coupling for typical array configurations (S21  &lt;  −23 dB). MR imaging distortion by the antenna was found negligible and MR temperature imaging in a homogeneous muscle phantom was highly correlated with gold-standard probe measurements (root mean square error: RMSE  =  0.51 °C and R2  =  0.99). This work paves the way for tailored MR imaging guided hyperthermia devices ranging from single antenna or incoherent antenna-arrays, to real-time adaptive hyperthermia with phased-arrays.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28052042</pmid><doi>10.1088/1361-6560/aa56b3</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2017-03, Vol.62 (5), p.1831-1847
issn 0031-9155
1361-6560
language eng
recordid cdi_crossref_primary_10_1088_1361_6560_aa56b3
source Institute of Physics Journals; MEDLINE
subjects hyperthermia
Hyperthermia, Induced - instrumentation
Hyperthermia, Induced - methods
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
microwave
Microwaves - therapeutic use
MR thermometry
MRI
Neoplasms - therapy
Phantoms, Imaging
phased-array
printed antenna
radiofrequency
Thermometry - instrumentation
Thermometry - methods
title A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20printed%20Yagi-Uda%20antenna%20for%20application%20in%20magnetic%20resonance%20thermometry%20guided%20microwave%20hyperthermia%20applicators&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Paulides,%20M%20M&rft.date=2017-03-07&rft.volume=62&rft.issue=5&rft.spage=1831&rft.epage=1847&rft.pages=1831-1847&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa56b3&rft_dat=%3Cproquest_cross%3E1855787627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855787627&rft_id=info:pmid/28052042&rfr_iscdi=true